Integral to the Maximum

Calculus Level 4

0 2 n π max ( sin x , sin 1 ( sin x ) ) d x = ? \int _{ 0 }^{ 2n\pi }{ \max \left( \sin x, { \sin }^{ -1 } (\sin x) \right)dx } = \ ?

Note that n n is an integer.

To try more such problems click here .
n ( π 2 8 ) 4 \frac{n(\pi^{2} - 8)}{4} n ( π 2 2 ) 4 \frac{n(\pi^{2} - 2)}{4} n ( π 2 4 ) 2 \frac{n(\pi^{2} - 4)}{2} n ( π 2 4 ) 4 \frac{n(\pi^{2} - 4)}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 2 n π m a x ( s i n x , s i n 1 ( s i n x ) ) d x I=\int _{ 0 }^{ 2n\pi }{ max(sin\quad x,\quad { sin }^{ -1 }(sin\quad x))dx }

= n [ 0 π 2 x d x + π 2 π ( π x ) d x + π 2 π ( s i n x ) d x ] =n\left[ \int _{ 0 }^{ \frac { \pi }{ 2 } }{ x\quad dx\quad +\quad \int _{ \frac { \pi }{ 2 } }^{ \pi }{ (\pi \quad -\quad x)dx\quad +\quad \int _{ \pi }^{ 2\pi }{ (sin\quad x)dx } } } \right]

= n [ π 2 8 + π 2 2 1 2 ( π 2 π 2 4 ) 2 ] =n\left[ \frac { { \pi }^{ 2 } }{ 8 } +\frac { { \pi }^{ 2 } }{ 2 } -\frac { 1 }{ 2 } \left( { \pi }^{ 2 }-\frac { { \pi }^{ 2 } }{ 4 } \right) -2 \right]

= n [ π 2 8 + π 2 2 3 π 2 8 2 ] =n\left[ \frac { { \pi }^{ 2 } }{ 8 } +\frac { { \pi }^{ 2 } }{ 2 } -\frac { { 3\pi }^{ 2 } }{ 8 } -2 \right]

= n ( π 2 8 ) 4 =\boxed{\frac{n(\pi^{2} - 8)}{4}}

Moderator note:

Sketching out the graph certainly helps visualize the question. Great job!

Chew-Seong Cheong
Apr 15, 2015

Same method with Harshvardhan Mehta better graph and maybe simpler calculations.

We note that for each cycle ( 2 π ) (2\pi) , there is a positive triangle and a negative sine curve. Therefore,

0 2 n π max ( sin x , sin 1 ( sin x ) ) d x = n ( 2 0 π 2 x d x 2 0 π 2 sin x d x ) = 2 n ( [ 1 2 x 2 ] 0 π 2 + [ cos x ] 0 π 2 ) = 2 n ( π 2 8 1 ) = n ( π 2 8 ) 4 \begin{aligned} \displaystyle \int_0^{2n\pi} {\max {\left( \sin{x}, \sin^{-1} {(\sin{x})}\right)} dx} & = n \left( 2 \displaystyle \int_0^{\frac{\pi}{2}} {xdx} - 2 \int_0^{\frac{\pi}{2}} {\sin{x}dx} \right) \\ & = 2n \left( \left[ \frac {1}{2} x^2 \right]_0^{\frac{\pi}{2}} + \left[ \cos {x} \right]_0^{\frac{\pi}{2}} \right) \\ & = 2n \left( \frac {\pi^2}{8} - 1 \right) = \boxed {\dfrac{n(\pi^2-8)}{4}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...