Integral value of an integral

Calculus Level 4

0 π / 2 tan x cos x ln ( sec x ) d x = ? \large \int_0^{\pi /2} \tan x \sqrt{\cos x} \ln(\sec x) \, dx = \, ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tunk-Fey Ariawan
Mar 1, 2014

Let t = sec x d t = tan x sec x d x t=\sec x\;\rightarrow\;dt=\tan x\sec x\,dx and for 0 < x < π 2 0<x<\frac{\pi}{2} is corresponding to 1 < t < 1<t<\infty , then 0 π 2 tan x cos x ln ( sec x ) d x = 0 π 2 tan x ln ( sec x ) sec x d x = 1 t 3 2 ln t d t . \begin{aligned} \int_0^{\frac{\pi}{2}}\tan x\sqrt{\cos x}\ln(\sec x)\,dx&=\int_0^{\frac{\pi}{2}}\frac{\tan x\ln(\sec x)}{\sqrt{\sec x}}\,dx\\ &=\int_1^{\infty}t^{-\frac{3}{2}}\ln t\,dt. \end{aligned} The last form integral can be solven by using IBP. Let u = ln t d u = 1 t d t u=\ln t\;\rightarrow\;du=\frac{1}{t}\,dt and d v = t 3 2 d t v = 2 t 1 2 dv=t^{-\frac{3}{2}}\,dt\;\rightarrow\;v=-2t^{-\frac{1}{2}} . Therefore 1 t 3 2 ln t d t = 2 lim a t 1 2 ln t t = 1 a + 2 1 t 1 2 1 t d t = 0 + 2 1 t 3 2 d t = 4 lim a t 1 2 t = 1 a = 4 ( 0 1 ) = 4 \begin{aligned} \int_1^{\infty}t^{-\frac{3}{2}}\ln t\,dt&=-2\lim_{a\to\infty}\left.t^{-\frac{1}{2}}\ln t\right|_{t=1}^a+2\int_1^\infty t^{-\frac{1}{2}\cdot}\frac{1}{t}\,dt\\ &=0+2\int_1^\infty t^{-\frac{3}{2}}\,dt\\ &=-4\lim_{a\to\infty}\left.t^{-\frac{1}{2}}\right|_{t=1}^a\\ &=-4(0-1)\\ &=\boxed{4} \end{aligned} # Q . E . D . # \text{\# }\mathbb{Q.E.D.}\text{ \#}

Nishant Sharma
Dec 28, 2013

Let l n s e c x = z lnsecx=z .

Then z = lim x 0 + l n s e c x = 0 z=\lim_{x\to0^{+}}lnsecx=0

z = lim x l n s e c x = z=\lim_{x\to\infty^-}lnsecx=\infty .

0 π 2 t a n x c o s x l n s e c x d x = 0 z e z 2 d z = I \int^\frac{\pi}{2}_0 tanx\,\sqrt{cosx}\,lnsecx\,dx = \int^\infty_0 z\,e^\frac{-z}{2}\,dz=\textbf{I} ( s a y ) (say)

I = lim z 2 z e z 2 + lim z 0 + 2 z e z 2 + 2 0 e z 2 d z \textbf{I}=\lim_{z\to\infty^-}-2z\,e^\frac{-z}{2}+\lim_{z\to0^+}2z\,e^\frac{-z}{2}+2\int^\infty_0 e^\frac{-z}{2} dz

I = 4 \rightarrow\textbf{I}=\boxed{4}

Making substitution u = 1 2 z u=\frac{1}{2}z then you have 4 0 u e u d u = 4 Γ ( 2 ) = 4 1 ! 4\int_0^\infty u\,e^{-u}\,du=4\cdot\Gamma(2)=4\cdot 1! where Γ ( n + 1 ) = 0 x n e x d x = n ! ; for n Z + \Gamma(n+1)=\int_0^\infty x^n e{-x}\,dx=n!\qquad;\qquad\text{for}\ n\in\mathbb{Z}_+ I myself solve the integral in the following manner 0 π 2 sin x cos x cos x ln ( 1 cos x ) d x \int_0^{\Large\frac{\pi}{2}}\frac{\sin x}{\cos x}\sqrt{\cos x}\ln\left(\frac{1}{\cos x}\right)\,dx then letting y = cos x y=\cos x after that let y = e t y=e^{-t} , you will get a gamma function .

Anastasiya Romanova - 7 years ago

I don't know why z z\rightarrow\infty does not come directly beyond lim \lim .

Nishant Sharma - 7 years, 5 months ago

Log in to reply

Hi, use \displaystyle \lim_{z \to \infty} to get lim z \displaystyle \lim_{z \to \infty}

jatin yadav - 7 years, 5 months ago

Log in to reply

lim z \displaystyle\lim_{z\to\infty} .

Thanks.....

Nishant Sharma - 7 years, 5 months ago
Aareyan Manzoor
Mar 16, 2016

The integral is I = 1 4 0 π / 2 2 sin ( t ) cos 1 / 2 ( t ) ln ( cos 2 ( t ) ) dt I=-\dfrac{1}{4}\int_0^{\pi/2} 2\sin(t)\cos^{-1/2}(t)\ln(\cos^2(t))\text{dt} COnsider the beta function B ( 1 , x ) = 0 π / 2 2 sin ( t ) cos 2 x 1 ( t ) dt B(1,x)=\int_0^{\pi/2} 2\sin(t)\cos^{2x-1}(t)\text{dt} d.w.r.x B ( 1 , x ) = 0 π / 2 2 sin ( t ) cos 2 x 1 ( t ) ln ( cos 2 ( t ) ) dt B'(1,x)=\int_0^{\pi/2}2\sin(t)\cos^{2x-1}(t)\ln(\cos^2(t))\text{dt} Now B ( 1 , x ) = d d x Γ ( 1 ) Γ ( x ) Γ ( x + 1 ) = d d x 1 x = 1 x 2 B'(1,x)=\dfrac{d}{dx} \dfrac{\Gamma(1)\Gamma(x)}{\Gamma(x+1)}=\dfrac{d}{dx} \dfrac{1}{x}=\dfrac{-1}{x^2} putting x=1/4 I = B ( 1 , 1 / 4 ) 4 = 4 2 4 = 4 I=-\dfrac{B'(1,1/4)}{4}=\dfrac{4^2}{4}=\boxed{4}

Moderator note:

Nice recognition of the relation to the beta function, offering an alternative approach.

Under what conditions can we interchange the order of differentiation and integration?

Nice recognition of the relation to the beta function, offering an alternative approach.

Under what conditions can we interchange the order of differentiation and integration?

Calvin Lin Staff - 5 years, 2 months ago

Log in to reply

I have always assumed this is always possible; are there any constraint?

Aareyan Manzoor - 5 years, 2 months ago

Log in to reply

Yes there are. We have to justify the interchange of limit operators (which is essentially what differentiation and integration are).

For example, if we take a m , n = 1 a_{m,n} = 1 if m > n m>n and a m , n = 0 a_{m,n} = 0 otheriwse, what is

lim m lim n a m , n lim n lim m a m , n ? \lim_{m} \lim_n a_{m,n} - \lim_n \lim_m a_{m,n}?

Calvin Lin Staff - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...