Integral Values

Algebra Level pending

{ z x = y 2 x 2 z = 2 ( 4 x ) x + y + z = 16 \begin{cases} z^x = y^{2x} \\ 2^z = 2(4^x) \\ x+y+z = 16 \end{cases}

Find the integral values of x x , y y , and z z satisfying the system of equations above. Submit x y z xyz .


The answer is 108.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 22, 2020

Given { z x = y 2 x . . . ( 1 ) 2 z = 2 ( 4 x ) . . . ( 2 ) x + y + z = 16 . . . ( 3 ) \begin{cases} z^x = y^{2x} & ...(1) \\ 2^z = 2(4^x) & ...(2) \\ x+y+z = 16 & ...(3) \end{cases}

From ( 2 ) (2) : 2 z = 2 ( 4 x ) = 2 2 x + 1 2^z = 2(4^x) = 2^{2x+1} , z = 2 x + 1 \implies \blue{z = 2x+1} .

From ( 3 ) (3) : x + y + z = x + y + 2 x + 1 = 16 x+y+ \blue z = x+y+ \blue{2x+1} = 16 , y = 15 3 x \implies \red{y = 15-3x} .

From ( 1 ) (1) :

z x = y 2 x 2 x + 1 = ( 15 3 x ) 2 2 x + 1 = 225 90 x + 9 x 2 9 x 2 92 x + 224 = 0 ( 9 x 56 ) ( x 4 ) = 0 x = 4 Taking only the integer solution y = 2 x + 1 = 9 z = 15 3 x = 3 \begin{aligned} \blue z^x & = \red y^{2x} \\ \blue{2x+1} & = \red{(15-3x)}^2 \\ 2x+1 & = 225-90x+9x^2 \\ 9x^2 - 92x + 224 & = 0 \\ (9x - 56)(x-4) & = 0 \\ \implies x & = 4 & \small \blue{\text{Taking only the integer solution}} \\ y & = 2x+1 = 9 \\ z & = 15-3x = 3 \end{aligned}

Therefore x y z = 4 × 9 × 3 = 108 xyz = 4\times 9 \times 3 = \boxed{108} .

Can you please explain how z x = y 2 x z^x=y^{2x} implies z = y 2 z = y^2 . You are assuming that z z is positive ?

Sabhrant Sachan - 1 year, 2 months ago

Log in to reply

y 2 0 y^2 \ge 0 is non-negative, hence z = y 2 0 z=y^2 \ge 0 .

Chew-Seong Cheong - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...