Integral with Tricks II

Calculus Level 2

1 π 0 1 ( 1 π sin ( 2 π 1 x 2 ) + 4 1 x 2 sin 2 ( π x ) ) d x \frac 1\pi\int_0^1\left(\frac 1\pi\sin \left(2\pi\sqrt{1-x^2}\right)+4\sqrt{1-x^2}\sin^2(\pi x)\right)dx Evaluate the expression above.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Aug 22, 2019

To start with, 0 1 ( 1 π sin ( 2 π 1 x 2 ) + 4 1 x 2 sin 2 ( π x ) ) d x = 0 1 2 π ( 1 π sin ( 2 π cos u ) cos u + 4 cos 2 u sin 2 ( π sin u ) ) d u \int_0^1 \left(\frac{1}{\pi}\sin\big(2\pi\sqrt{1-x^2}\big) + 4\sqrt{1-x^2}\sin^2(\pi x)\right)\,dx \; = \; \int_0^{\frac12\pi}\left(\frac{1}{\pi}\sin\big(2\pi\cos u\big)\cos u + 4\cos^2u\sin^2\big(\pi\sin u\big)\right)\,du A linear change of variable and integration by parts gvies 1 π 0 1 2 π sin ( 2 π cos u ) cos u d u = 1 π 0 1 2 π sin ( 2 π sin u ) sin u d u = 1 π [ sin ( 2 π sin u ) cos u ] 0 1 2 π + 2 0 1 2 π cos ( 2 π sin u ) cos 2 u d u = 2 0 1 2 π ( 1 2 sin 2 ( π sin u ) ) cos 2 u d u \begin{aligned} \frac{1}{\pi}\int_0^{\frac12\pi}\sin\big(2\pi \cos u\big)\cos u\,du & = \; \frac{1}{\pi}\int_0^{\frac12\pi}\sin\big(2\pi \sin u\big)\,\sin u\,du \\ & = \; -\frac{1}{\pi}\Big[\sin\big(2\pi \sin u\big)\cos u\Big]_0^{\frac12\pi} + 2\int_0^{\frac12\pi} \cos\big(2\pi \sin u\big)\,\cos^2u\,du \\ & = \; 2\int_0^{\frac12\pi}\left(1 - 2\sin^2\big(\pi \sin u\big)\right)\cos^2u\,du \end{aligned} and hence 1 π 0 1 ( 1 π sin ( 2 π 1 x 2 ) + 4 1 x 2 sin 2 ( π x ) ) d x = 2 π 0 1 2 π cos 2 u d u = 1 2 \frac{1}{\pi}\int_0^1 \left(\frac{1}{\pi}\sin\big(2\pi\sqrt{1-x^2}\big) + 4\sqrt{1-x^2}\sin^2(\pi x)\right)\,dx \; = \; \frac{2}{\pi}\int_0^{\frac12\pi}\cos^2u\,du \; = \; \boxed{\tfrac12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...