Integral with Tricks

Calculus Level 3

0 π / 2 1 1 + tan 3 x d x = π A \large\int_0^{\pi/2}\frac 1{1+\tan^{\sqrt{3}}x}\ dx=\frac \pi A

Find A A .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 15, 2018

Similar solution with D G 's

I = 0 π 2 1 1 + tan 3 x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( 1 1 + tan 3 x + 1 1 + tan 3 ( π 2 x ) ) d x = 1 2 0 π 2 ( 1 1 + tan 3 x + 1 1 + cot 3 x ) d x = 1 2 0 π 2 ( 1 1 + tan 3 x + 1 1 + 1 tan 3 x ) d x = 1 2 0 π 2 ( 1 1 + tan 3 x + tan 3 x tan 3 x + 1 ) d x = 1 2 0 π 2 d x = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac 1{1+\tan^{\sqrt 3}x} dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^{\sqrt 3}x} + \frac 1{1+\tan^{\sqrt 3}\left(\frac \pi 2 - x\right)} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^{\sqrt 3}x} + \frac 1{1+\cot^{\sqrt 3}x} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^{\sqrt 3}x} + \frac 1{1+\frac 1{\tan^{\sqrt 3}x}} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^{\sqrt 3}x} + \frac {\tan^{\sqrt 3}x}{\tan^{\sqrt 3}x + 1} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 dx = \frac \pi 4 \end{aligned}

Therefore, A = 4 A = \boxed{4} .

D G
May 14, 2018

G = 0 π / 2 1 1 + tan a x d x = 0 π / 2 cos a x cos a x + sin a x d x G = \int_0^{\pi/2} \frac{1}{1 + \tan^a{x}} dx = \int_0^{\pi/2} \frac{\cos^a{x}}{\cos^a{x} + \sin^a{x}} dx

Using the fact that α β f ( x ) d x = α β f ( α + β x ) d x \int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\beta} f(\alpha + \beta - x) dx :

G = 0 π / 2 cos a ( π / 2 x ) cos a ( π / 2 x ) + sin a ( π / 2 x ) d x = 0 π / 2 sin a x sin a x + cos a x d x G = \int_0^{\pi/2} \frac{\cos^a{(\pi/2 - x)}}{\cos^a{(\pi/2 - x)} + \sin^a{(\pi/2 - x)}} dx = \int_0^{\pi/2} \frac{\sin^a{x}}{\sin^a{x} + \cos^a{x}} dx 2 G = 0 π / 2 sin a x + cos a x sin a x + cos a x d x = 0 π / 2 d x = π 2 2 G = \int_0^{\pi/2} \frac{\sin^a{x} + \cos^a{x}}{\sin^a{x} + \cos^a{x}} dx = \int_0^{\pi/2} dx = \frac{\pi}{2} G = π 4 G = \frac{\pi}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...