Integral_5

Calculus Level 4

0 1 ln ( t ) 1 t d t = a ( ln ( b ) c ) \int_{0}^{1} \frac{\ln (t)}{\sqrt{1-t}} \, d t=a(\ln (b)-c)

Minimize the sum of integers, a + b + c a + b + c .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 1 ln t 1 t d t By identity a b f ( x ) d x = a b f ( a + b x ) d x = 0 1 ln ( 1 t ) t d t Let x 2 = t 2 x d x = d t = 0 1 2 ln ( 1 x 2 ) d x = 2 0 1 ( ln ( 1 + x ) + ln ( 1 x ) ) d x = 2 [ ( 1 + x ) ln ( 1 + x ) x ( 1 x ) ln ( 1 x ) x ] 0 1 Note that lim x 1 ( 1 x ) ln ( 1 x ) = 0 = 2 ( 2 ln 2 2 ) = 4 ( ln 2 1 ) \begin{aligned} I & = \int_0^1 \frac {\ln t}{\sqrt{1-t}} dt & \small \color{#3D99F6} \text{By identity }\int_a^b f(x)\ dx = \int_a^b f(a+b-x)\ dx \\ & = \int_0^1 \frac {\ln (1-t)}{\sqrt t} dt & \small \color{#3D99F6} \text{Let }x^2 = t \implies 2x\ dx = dt \\ & = \int_0^1 2\ln (1-x^2)\ dx \\ & = 2 \int_0^1 \big(\ln (1+x) + \ln (1-x) \big)\ dx \\ & = 2\bigg[(1+x)\ln(1+x) - x - (1-x)\ln (1-x) - x\bigg]_0^1 & \small \color{#3D99F6} \text{Note that }\lim_{x \to 1}(1-x)\ln(1-x) = 0 \\ & = 2(2\ln 2 - 2) = 4(\ln 2-1) \end{aligned}

Therefore, a + b + c = 4 + 2 + 1 = 7 a+b+c = 4+2+1 = \boxed 7 .

Hassan Abdulla
Jun 30, 2019

call Beta function

B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t d d x B ( x , y ) = d d x 0 1 t x 1 ( 1 t ) y 1 d t B ( x , y ) ( ψ ( x ) ψ ( x + y ) ) = 0 1 t x 1 ( 1 t ) y 1 ln ( t ) d t B ( 1 , 1 2 ) ( ψ ( 1 ) ψ ( 3 2 ) ) = 0 1 ( 1 t ) 1 2 ln ( t ) d t put x = 1 , y = 1 2 0 1 ln ( t ) 1 t d t = 2 ( 2 ln ( 2 ) 2 ) = 4 ( ln ( 2 ) 1 ) β ( 1 , 1 2 ) = 2 , ψ ( 1 ) = γ , ψ ( 3 2 ) = γ 2 ln ( 2 ) + 2 \begin{aligned} & \Beta(x,y)=\int_0^1 t^{x-1}(1-t)^{y-1}dt\\ & \frac{d}{dx}\Beta(x,y)=\frac{d}{dx}\int_0^1 t^{x-1}(1-t)^{y-1}dt\\ & \Beta(x,y)\left(\psi(x)-\psi(x+y)\right)=\int_0^1 t^{x-1}(1-t)^{y-1}\ln(t)dt\\ & \Beta(1,\frac{1}{2})\left(\psi(1)-\psi(\frac{3}{2})\right)=\int_0^1 (1-t)^{-\frac{1}{2}}\ln(t)dt & & \color{#D61F06} \text{put } x=1,y=\frac{1}{2}\\ & \int_0^1 \frac{\ln(t)}{\sqrt{1-t}}dt=2(2\ln(2)-2)=4\left ( \ln(2) - 1 \right ) & & \color{#D61F06} \beta(1,\frac{1}{2})=2,\psi(1)=-\gamma,\psi(\frac{3}{2})=-\gamma-2\ln(2)+2\\ \end{aligned}

where γ \color{#D61F06} \gamma is the Euler–Mascheroni constant .

@Hassan Abdulla , by convention capital letter beta B ( ) \text{B}(\cdot) instead of small letter beta β ( ) \beta (\cdot) is used to denote beta function just like gamma function Γ ( ) \Gamma (\cdot) is not γ ( ) \gamma (\cdot) .

Chew-Seong Cheong - 1 year, 11 months ago

Log in to reply

@Chew-Seong Cheong thank you

Hassan Abdulla - 1 year, 11 months ago

Log in to reply

You are welcome. From Wikipedia :

"The beta function was studied by Euler and Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta rather than the similar Latin capital B or the Greek lowercase β."

Chew-Seong Cheong - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...