Integral

Calculus Level 4

Evaluate: 0 1 x arctan ( 3 x 2 4 x 4 + 5 x 2 + 2 ) d x \displaystyle\int^{\infty}_{0} \frac 1x \cdot \arctan\left(\frac{3x^2}{4x^4+5x^2+2}\right) \ dx

ln ( 2 ) 8 \dfrac{\ln(2)}{8} π ln ( 2 ) 8 \dfrac{\pi\ln(2)}{8} π ln ( 2 ) 4 \dfrac{\pi\ln(2)}{4} ln ( 2 ) 4 \dfrac{\ln(2)}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 17, 2018

Note that 3 x 2 4 x 4 + 5 x 2 + 2 = ( 4 x 2 + 1 ) ( x 2 + 1 ) 1 + ( 4 x 2 + 1 ) ( x 2 + 1 ) \frac{3x^2}{4x^4 + 5x^2 + 2} \; = \; \frac{(4x^2+1)-(x^2+1)}{1 + (4x^2+1)(x^2+1)} and hence the integral is I = 0 [ tan 1 ( 4 x 2 + 1 ) tan 1 ( x 2 + 1 ) ] d x x = lim X , t 0 t X [ tan 1 ( 4 x 2 + 1 ) tan 1 ( x 2 + 1 ) ] d x x = lim X , t 0 ( 2 t 2 X tan 1 ( x 2 + 1 ) d x x t X tan 1 ( x 2 + 1 ) d x x ) = lim X X 2 X tan 1 ( x 2 + 1 ) d x x lim t 0 t 2 t tan 1 ( x 2 + 1 ) d x x = lim X 1 / ( 2 X ) 1 / X tan 1 ( 1 + x 2 ) d x x lim t 0 t 2 t tan 1 ( x 2 + 1 ) d x x = lim t 0 t 2 t tan 1 ( 1 + x 2 ) d x x lim t 0 t 2 t tan 1 ( x 2 + 1 ) d x x = 1 2 π ln 2 1 4 π ln 2 = 1 4 π ln 2 \begin{aligned} I & = \; \int_0^\infty \big[\tan^{-1}(4x^2+1) - \tan^{-1}(x^2+1)\big]\,\frac{dx}{x} \; = \; \lim_{X \to \infty , t \to 0} \int_t^X \big[\tan^{-1}(4x^2+1) - \tan^{-1}(x^2+1)\big]\,\frac{dx}{x}\\ & = \; \lim_{X \to \infty,t \to 0}\left(\int_{2t}^{2X} \tan^{-1}(x^2+1)\frac{dx}{x} - \int_t^X \tan^{-1}(x^2+1)\,\frac{dx}{x}\right) \; = \; \lim_{X \to \infty}\int_X^{2X}\tan^{-1}(x^2+1)\,\frac{dx}{x} - \lim_{t \to 0}\int_t^{2t} \tan^{-1}(x^2+1)\,\frac{dx}{x} \\ & = \; \lim_{X\to \infty}\int_{1/(2X)}^{1/X} \tan^{-1}(1 + x^{-2}) \frac{dx}{x} - \lim_{t \to 0} \int_t^{2t}\tan^{-1}(x^2+1)\,\frac{dx}{x} \; = \; \lim_{t \to 0}\int_t^{2t} \tan^{-1}(1 + x^{-2}) \frac{dx}{x} - \lim_{t \to 0} \int_t^{2t}\tan^{-1}(x^2+1)\,\frac{dx}{x}\\ & = \; \tfrac12\pi \ln2 - \tfrac14\pi \ln 2 \; = \; \boxed{\tfrac14\pi \ln2} \end{aligned}

After substituting t=x^2, we can directly use result of "frullani integral" and get the answer.

Aaron Jerry Ninan - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...