Not Trigonometric Substitution

Calculus Level 3

π π 2 x ( 1 + sin x ) 1 + cos 2 x d x = π m , m = ? \displaystyle \int_{-\pi} ^\pi \frac {2x (1 + \sin x)}{1 + \cos^2 x} \ \mathrm d x = \pi^m, \ \ \ \ m = \ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Feb 18, 2015

Our integral can be represented as:

I = π π 2 x d x 1 + cos 2 x + π π 2 x sin x d x 1 + cos 2 x \displaystyle I= \int_{-\pi}^{\pi} \frac{2xdx}{1+\cos^2x} + \int_{-\pi}^{\pi} \frac{2x\sin x dx}{1+\cos^2x}

The first integral is zero ( integrand is odd function and see the integration limits) . Use Integration by parts in the second integral , with u = 2 x u=2x and d v = sin x d x 1 + cos 2 x dv= \frac{\sin x dx}{1+\cos^2x} :

d u = 2 d x , v = arctan ( cos x ) \displaystyle du=2dx , v=-\arctan(\cos x)

= > I = 2 x arctan ( cos x ) π π + 2 π π arctan ( cos x ) d x \displaystyle => I= \left. -2x\arctan(\cos x) \right |_{-\pi}^{\pi} +2\int_{-\pi}^{\pi} \arctan(\cos x) dx

I = π 2 + 4 0 π arctan ( cos x ) d x ( 1 ) \displaystyle I = \pi^2 + 4\int_{0}^{\pi} \arctan(\cos x) dx {\color{#D61F06}{ --\to (1)}}

I = π 2 + 4 0 π arctan ( cos ( π x ) ) d x ( x ( π x ) ) \displaystyle I = \pi^2 + 4\int_{0}^{\pi} \arctan(\cos (\pi-x)) dx {\color{#3D99F6}{(x\to (\pi-x)) }}

I = π 2 4 0 π arctan ( cos x ) d x ( 2 ) \displaystyle I = \pi^2 - 4\int_{0}^{\pi} \arctan(\cos x) dx {\color{#D61F06}{--\to (2)}}

Add ( 1 ) {\color{#D61F06}{(1)}} and ( 2 ) {\color{#D61F06}{(2)}} :

2 I = 2 π 2 = > I = π 2 \displaystyle 2I = 2\pi^2 => \boxed{I=\pi^2 }

Let me present an alternative solution that doesn't use IBP and instead uses simple trigonometric substitution later on. We use a particular property of definite integrals, namely: a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle\int\limits_a^b f(x)\,dx=\int\limits_a^b f(a+b-x)\,dx


Moving on to the problem, consider the integral as I I . Using the property mentioned above, we have,

I = π π 2 x ( 1 + sin x ) 1 + cos 2 x d x = π π 2 x ( 1 sin x ) 1 + cos 2 x d x 2 I = π π 2 x ( 1 + sin x 1 + sin x ) 1 + cos 2 x d x 2 I = π π 4 x sin x 1 + cos 2 x d x I=\int\limits_{-\pi}^\pi \frac{2x(1+\sin x)}{1+\cos^2 x}\,dx=-\int\limits_{-\pi}^\pi \frac{2x(1-\sin x)}{1+\cos^2 x}\,dx\\ \implies 2I=\int\limits_{-\pi}^\pi \frac{2x(1+\sin x -1+\sin x)}{1+\cos^2 x}\,dx\\ \implies 2I=\int\limits_{-\pi}^\pi \frac{4x\sin x}{1+\cos^2 x}\,dx

Now, this integrand is even and hence, we can simplify it as,

2 I = 2 0 π 4 x sin x 1 + cos 2 x d x I = 0 π 4 x sin x 1 + cos 2 x d x 2I=2\cdot \int\limits_0^\pi \frac{4x\sin x}{1+\cos^2 x}\,dx\implies I=\int\limits_0^\pi \frac{4x\sin x}{1+\cos^2 x}\,dx

Using the property mentioned at the very beginning, the integral can be written as,

I = 0 π 4 π sin x 1 + cos 2 x I 2 I = 4 π 0 π sin x 1 + cos 2 d x I=\int\limits_0^\pi \frac{4\pi\sin x}{1+\cos^2 x}-I\implies 2I=4\pi\cdot \int\limits_0^\pi \frac{\sin x}{1+\cos^2}\,dx

Make the substitution t = ( cos x ) t=(-\cos x) and d t = sin x d x \,dt=\sin x \,dx to get,

2 I = 4 π 1 1 d t 1 + t 2 2I=4\pi\cdot\int\limits_{-1}^1 \frac{\,dt}{1+t^2}

This integrand is again even and also we can easily identify the integrand to be the derivative of arctan t \arctan t . Hence, we have,

2 I = 8 π [ arctan t ] 0 1 = 8 π ( π 4 0 ) I = π 2 2I=8\pi\cdot\left[\arctan t\right]_0^1=8\pi\left(\frac{\pi}{4}-0\right)\\ \implies \boxed{I=~\pi^2}


@kritarth lohomi , Problem? :3

Prasun Biswas - 6 years, 2 months ago

Log in to reply

I solved the same way too .

A Former Brilliant Member - 6 years, 2 months ago

No, never, nakku, ille!!

kritarth lohomi - 6 years, 2 months ago

The limits are from π \pi to π \pi . Isn't the answer zero?

Vishwak Srinivasan - 6 years, 2 months ago

Log in to reply

If you spot any errors with a problem, you can “report” it by selecting "report problem" in the “dot dot dot” menu in the lower right corner. That will allow the problem creator to be notified, and they can fix this problem.

Calvin Lin Staff - 6 years, 2 months ago

Can anyone please check? I could not try the question. @ @Calvin Lin

Vishwak Srinivasan - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...