Integrals

Calculus Level 4

0 1 x 7 1 x 2 d x \int _{ 0 }^{ 1 }{ \frac { { x }^{ 7 } }{ \sqrt { 1-{ x }^{ 2 } } } \, dx }

The integral above has a closed form. Find the value of this closed form.

Give your answer to 3 decimal places.


The answer is 0.457.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aadil Bhore
Jun 12, 2016

0 1 x 7 1 x 2 d x . \int_0^1 \! \frac{x^7}{\sqrt{1-x^2}} \, \mathrm{d}x.

u = 1 x 2 u 2 = 1 x 2 2 u d u = 2 x d x u = \sqrt{ 1-x^2 } \\ u^2 = 1 - x^2 \\ 2udu = -2xdx

0 1 x 6 u x d x . 1 0 x 6 u u d u . 0 1 x 6 d u . 0 1 ( 1 u 2 ) 3 d u . 0 1 1 3 u 2 + 3 u 4 u 6 d u . \int_0^1 \! \frac{x^6}{u} *x \, \mathrm{d}x.\\ \int_1^0 \! \frac{x^6}{u} *-u \, \mathrm{d}u.\\ \int_0^1 \! x^6 \, \mathrm{d}u.\\ \int_0^1 \! (1-u^2)^3 \, \mathrm{d}u.\\ \int_0^1 \! 1 - 3u^2 + 3u^4 - u^6 \, \mathrm{d}u.

which is 1 1 + 3 5 1 7 = . 457 1 - 1 + \frac{3}{5} - \frac{1}{7} = .457

Nice Approach!

Prakhar Bindal - 5 years ago

FYI To display the square root symbol, just use \sqrt{ math }

Calvin Lin Staff - 4 years, 12 months ago

Log in to reply

Fixed! Thanks!

Aadil Bhore - 4 years, 11 months ago
Rishi Sharma
Jun 11, 2016

Relevant wiki: Integration Techniques

Let I = 0 1 x 7 ( 1 x 2 ) d x I =\int _{ 0 }^{ 1 }{ \frac { { x }^{ 7 } }{ \sqrt { \left( 1-{ x }^{ 2 } \right) } } dx } just substitue x = sin z x=\sin { z } .Hence d x = c o s z d z dx=coszdz . Transforming the integral to:- I = 0 π 2 ( sin z ) 7 cos z cos z d z I = 0 π 2 ( sin z ) 7 d z I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { \left( \sin { z } \right) }^{ 7 } }{ \cos { z } } } \cos { z } dz\Rightarrow I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { \left( \sin { z } \right) }^{ 7 }dz } Now we can simply use the reduction formula I n = n 1 n I n 2 { I n = 0 π 2 ( sin x ) n d x } \displaystyle { I }_{ n }=\frac { n-1 }{ n } { I }_{ n -2}\quad \left\{ { I }_{ n }=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { \left( \sin { x } \right) }^{ n }dx } \right\} . And get I = 16 35 0.457 I=\frac{16}{35} \approx 0.457 . Or else you can also use the Beta function Like Sir Chew-Seong Cheong has used

Moderator note:

Good substitution used + application of reduction formula.

Yeah did the same way just derived the reduction formula as did not remembered

Prakhar Bindal - 5 years ago

After getting I we can simply apply beta function to get the direct result

Samarth Agarwal - 5 years ago
Chew-Seong Cheong
Jun 11, 2016

I = 0 1 x 7 1 x 2 d x = 0 1 x 7 ( 1 x 2 ) 1 2 d x = 1 2 B ( 4 , 1 2 ) = Γ ( 4 ) Γ ( 1 2 ) 2 Γ ( 9 2 ) = 3 ! Γ ( 1 2 ) 2 7 2 5 2 3 2 1 2 Γ ( 1 2 ) = 16 35 0.457 \begin{aligned} I & =\int_0^1 \frac {x ^7}{\sqrt {1 - x^2}} dx\\ & =\int_0^1 x ^7(1 - x^2) ^{-\frac 12}\ dx \\ & = \frac 12 B \left(4,\frac 12 \right) \\&= \frac {\Gamma(4) \Gamma \left( \frac 12 \right)} {2 \Gamma \left (\frac 92\right)} \\ & = \frac {3!\Gamma \left( \frac 12 \right)} { 2 \cdot \frac7 2 \cdot \frac 52 \cdot \frac 32 \cdot \frac 12 \Gamma \left( \frac 12 \right)} \\ & = \frac {16}{35} \approx \boxed{0.457} \end{aligned}

Nice by using gamma function...

yohenba soibam - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...