Integrals.

Calculus Level 3

0 π / 4 ( tan x ) sec x ( ln ( ( tan x ) sec x tan x ) + sec 3 x tan x ) d x = ? \large \int_0^{\pi /4} (\tan x)^{\sec x} \left(\ln \left( ( \tan x)^{\sec x \tan x} \right) + \dfrac{\sec^3 x}{\tan x} \right) dx = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 21, 2018

Note that

d d x tan sec x x = d d x e sec x ln tan x = ( sec x tan x ln ( tan x ) + sec x 1 tan x sec 2 x ) e sec x ln tan x = tan sec x x ( ln ( tan sec x tan x x ) + sec 3 x tan x ) \begin{aligned} \dfrac d{dx} \tan^{\sec x} x & = \dfrac d{dx} e^{\sec x\ln \tan x} \\ & = \left(\sec x \tan x \ln (\tan x) + \sec x \cdot \frac 1{\tan x} \cdot \sec^2 x \right) e^{\sec x\ln \tan x} \\ & = \tan^{\sec x} x \left(\ln \left(\tan^{\sec x \tan x} x\right) + \frac {\sec^3 x}{\tan x} \right) \end{aligned}

Therefore,

0 π 4 tan sec x x ( ln ( tan sec x tan x x ) + sec 3 x tan x ) d x = tan sec x x 0 π 4 = 1 2 0 1 = 1 \begin{aligned} \int_0^\frac \pi 4 \tan^{\sec x} x \left(\ln \left(\tan^{\sec x \tan x} x\right) + \frac {\sec^3 x}{\tan x} \right) dx & = \tan^{\sec x} x \bigg|_0^\frac \pi 4 = 1^{\sqrt 2} - 0^1 = \boxed{1} \end{aligned}

Thank you for sharing your solution. I always look forward for your solutions.

Hana Wehbi - 3 years, 3 months ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 3 years, 3 months ago

@Chew-Seong Cheong I'm getting problem solving this integral.

Could you help me please: Integrate tan(sqrt(x)) dx.

I hope hear from you soon.

Regards, Romeo

Romeo Neto - 3 years, 3 months ago
D S
Feb 20, 2018

By inspection our integral is (tanx)^(secx)+C what motivates this is when u take the derivative of exponential you have y//y=alnq+c type form so y is exponentail and part of final derivative

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...