∫ 0 ∞ 1 + x 2 tan − 1 x 2 d x
The above integral is equal to which integral/s in the options?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Mark Henning's solution is the better solution. Here is a brute force solution.
∫ 0 ∞ x 2 + 1 tan − 1 ( x 2 ) d x = ∫ 0 ∞ x 2 + 1 cot − 1 ( x 2 ) d x = 8 π 2
∫ 0 ∞ x 2 + 1 tan − 1 ( x 3 ) d x = 1 6 π 2 G 5 , 5 4 , 5 ( 1 ∣ ∣ ∣ ∣ 6 1 , 2 1 , 2 1 , 6 5 , 1 6 1 , 2 1 , 2 1 , 6 5 , 0 ) = 1 6 π 2 2 π 4 = 8 π 2
∫ 0 ∞ x 2 + 1 tan − 1 ( x 3 ) d x = 1 6 π 2 G 5 , 5 5 , 4 ( 1 ∣ ∣ ∣ ∣ 6 1 , 2 1 , 2 1 , 6 5 , 1 0 , 6 1 , 2 1 , 2 1 , 6 5 ) = 1 6 π 2 2 π 4 = 8 π 2
In these cases, the G function is the Meijer G function .
Problem Loading...
Note Loading...
Set Loading...
All four functions f 1 ( x ) = tan − 1 x 2 f 2 ( x ) = tan − 1 x 3 f 3 ( x ) = cot − 1 x 2 f 4 ( x ) = cot − 1 x 3 have the property that f j ( x ) + f j ( x − 1 ) = 2 1 π x > 0 , j = 1 , 2 , 3 , 4 Thus the substitution y = x − 1 gives ∫ 0 ∞ x 2 + 1 f j ( x ) d x = ∫ 0 ∞ y 2 + 1 f j ( y − 1 ) d y = ∫ 0 ∞ x 2 + 1 2 1 π − f j ( x ) d x = 2 1 × 2 1 π ∫ 0 ∞ x 2 + 1 d x = 8 1 π 2 for j = 1 , 2 , 3 , 4 , so all four integrals are the same.