Integrals in Disguise

Calculus Level 5

0 tan 1 x 2 1 + x 2 d x \int_{0}^{\infty} \frac{\tan ^{-1} x^{2}}{1+x^{2}} \, d x

The above integral is equal to which integral/s in the options?

0 tan 1 x 3 1 + x 2 d x \int_0^\infty \frac{\tan^{-1}x^3}{1+x^2}\,dx 0 cot 1 x 2 1 + x 2 d x \int_0^\infty \frac{\cot^{-1}x^2}{1+x^2}\,dx 0 cot 1 x 3 1 + x 2 d x \int_0^\infty \frac{\cot^{-1}x^3}{1+x^2}\,dx All of three integrals above None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 2, 2019

All four functions f 1 ( x ) = tan 1 x 2 f 2 ( x ) = tan 1 x 3 f 3 ( x ) = cot 1 x 2 f 4 ( x ) = cot 1 x 3 f_1(x) \; = \; \tan^{-1}x^2 \hspace{1cm} f_2(x) \; = \; \tan^{-1}x^3 \hspace{1cm} f_3(x) \; = \; \cot^{-1}x^2 \hspace{1cm} f_4(x) \; = \; \cot^{-1}x^3 have the property that f j ( x ) + f j ( x 1 ) = 1 2 π x > 0 , j = 1 , 2 , 3 , 4 f_j(x) + f_j(x^{-1}) = \tfrac12\pi \hspace{2cm} x > 0\;,\; j = 1,2,3,4 Thus the substitution y = x 1 y = x^{-1} gives 0 f j ( x ) x 2 + 1 d x = 0 f j ( y 1 ) y 2 + 1 d y = 0 1 2 π f j ( x ) x 2 + 1 d x = 1 2 × 1 2 π 0 d x x 2 + 1 = 1 8 π 2 \begin{aligned} \int_0^\infty \frac{f_j(x)}{x^2+1}\,dx & = \; \int_0^\infty \frac{f_j(y^{-1})}{y^2+1}\,dy \; = \; \int_0^\infty \frac{\frac12\pi - f_j(x)}{x^2+1}\,dx \\ & = \; \tfrac12\times \tfrac12\pi \int_0^\infty \frac{dx}{x^2+1} \; = \; \tfrac18\pi^2 \end{aligned} for j = 1 , 2 , 3 , 4 j=1,2,3,4 , so all four integrals are the same.

Mark Henning's solution is the better solution. Here is a brute force solution.

0 tan 1 ( x 2 ) x 2 + 1 d x = 0 cot 1 ( x 2 ) x 2 + 1 d x = π 2 8 \int_0^{\infty } \frac{\tan ^{-1}\left(x^2\right)}{x^2+1} \, dx = \int_0^{\infty } \frac{\cot ^{-1}\left(x^2\right)}{x^2+1} \, dx = \frac{\pi ^2}{8}

0 tan 1 ( x 3 ) x 2 + 1 d x = G 5 , 5 4 , 5 ( 1 1 6 , 1 2 , 1 2 , 5 6 , 1 1 6 , 1 2 , 1 2 , 5 6 , 0 ) 16 π 2 = 2 π 4 16 π 2 = π 2 8 \int_0^{\infty } \frac{\tan ^{-1}\left(x^3\right)}{x^2+1} \, dx = \frac{G_{5,5}^{4,5}\left(1\left| \begin{array}{c} \frac{1}{6},\frac{1}{2},\frac{1}{2},\frac{5}{6},1 \\ \frac{1}{6},\frac{1}{2},\frac{1}{2},\frac{5}{6},0 \\ \end{array} \right.\right)}{16 \pi ^2} = \frac{2 \pi ^4}{16 \pi ^2} = \frac{\pi ^2}{8}

0 tan 1 ( x 3 ) x 2 + 1 d x = G 5 , 5 5 , 4 ( 1 1 6 , 1 2 , 1 2 , 5 6 , 1 0 , 1 6 , 1 2 , 1 2 , 5 6 ) 16 π 2 = 2 π 4 16 π 2 = π 2 8 \int_0^{\infty } \frac{\tan ^{-1}\left(x^3\right)}{x^2+1} \, dx = \frac{G_{5,5}^{5,4}\left(1\left| \begin{array}{c} \frac{1}{6},\frac{1}{2},\frac{1}{2},\frac{5}{6},1 \\ 0,\frac{1}{6},\frac{1}{2},\frac{1}{2},\frac{5}{6} \\ \end{array} \right.\right)}{16 \pi ^2} = \frac{2 \pi ^4}{16 \pi ^2} = \frac{\pi ^2}{8}

In these cases, the G function is the Meijer G function .

A Former Brilliant Member - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...