Integrals l

Calculus Level 3

2 ( 3 x 2 2 ) sin 5 ( x 3 2 x ) cos ( x 3 2 x ) d x = ? \int 2(3x^2-2)\sin^5(x^3-2x)\cos(x^3-2x)dx=? where C C is the constant of integration.

tan 6 ( x 3 2 x ) 3 + C \frac{\tan^6(x^3-2x)}{3}+C cos 3 ( x 3 2 x ) 3 + C \frac{\cos^3(x^3-2x)}{3}+C sin 3 ( x 3 2 x ) 3 + C \frac{\sin^3(x^3-2x)}{3}+C sin 6 ( x 3 2 x ) 3 + C \frac{\sin^6(x^3-2x)}{3}+C cos 6 ( x 3 2 x ) 3 + C \frac{\cos^6(x^3-2x)}{3}+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 2 ( 3 x 2 ) sin 5 ( x 3 2 x ) cos ( x 3 2 x ) d x Let u = sin ( x 3 2 x ) = 2 u 5 d u d u = ( 3 x 2 ) cos ( x 3 2 x ) d x = u 6 3 + C where C is the constant of integration. = sin 6 ( x 3 2 x ) 3 + C \begin{aligned} I & = \int 2(3x-2)\sin^5 (x^3-2x) \cos (x^3-2x) \ dx & \small \color{#3D99F6} \text{Let }u = \sin (x^3-2x) \\ & = \int 2u^5 \ du & \small \color{#3D99F6} \implies du = (3x-2)\cos (x^3-2x) \ dx \\ & = \frac {u^6}3 + C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ & = \boxed{\frac {\sin^6 (x^3-2x)}3+C} \end{aligned}

Steven Chase
Aug 5, 2019

2 ( 3 x 2 2 ) s i n 5 ( x 3 2 x ) c o s ( x 3 2 x ) d x \int 2(3x^2 - 2) \, sin^5 (x^3 - 2x) \, cos(x^3 - 2x) \, dx

Variable substitution:

u = x 3 2 x d x = d u 3 x 2 2 u = x^3 - 2x \\ dx = \frac{du}{3x^2 - 2}

Plugging in:

2 s i n 5 ( u ) c o s ( u ) d u \int 2 \, sin^5 (u) \, cos (u) \, du

Another variable substitution:

v = s i n ( u ) d u = d v c o s ( u ) v = sin (u )\\ du = \frac{dv}{cos(u)}

Plugging in:

2 v 5 d v = v 6 3 + C = s i n 6 ( u ) 3 + C = s i n 6 ( x 3 2 x ) 3 + C \int 2 \, v^5 \, dv = \frac{v^6}{3} + C = \frac{sin^6 (u)}{3} + C = \frac{sin^6 (x^3 - 2x)}{3} + C

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...