Integrals of sine and cosine

Calculus Level 3

0 π 4 sin 3 x cos 3 x ( sin 4 x + cos 4 x ) 2 d x = a b \large \int_0^\frac \pi 4 \frac {\sin^3 x \cos^3 x}{\left(\sin^4 x + \cos^4 x\right)^2} dx = \frac ab

The equation above holds true for positive coprime integers a a and b b . Find a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 19, 2018

I = 0 π 4 sin 3 x cos 3 x ( sin 4 x + cos 4 x ) 2 d x Multiply up and down by sec 8 x = 0 π 4 tan 3 x sec 2 x ( tan 4 x + 1 ) 2 d x Let t = tan x d t = sec 2 x d x = 0 1 t 3 ( t 4 + 1 ) 2 d t Let u = t 4 + 1 d u = 4 t 3 d t = 1 4 1 2 1 u 2 d u = 1 4 u 2 1 = 1 4 1 8 = 1 8 \begin{aligned} I & = \int_0^\frac \pi 4 \frac {\sin^3 x \cos^3 x}{\left(\sin^4 x + \cos^4 x\right)^2} dx & \small \color{#3D99F6} \text{Multiply up and down by }\sec^8 x \\ & = \int_0^\frac \pi 4 \frac {\tan^3 x \sec^2 x}{\left(\tan^4 x + 1\right)^2} dx & \small \color{#3D99F6} \text{Let }t = \tan x \implies dt = \sec^2 x\ dx \\ & = \int_0^1 \frac {t^3}{\left(t^4+ 1\right)^2} dt & \small \color{#3D99F6} \text{Let }u = t^4+1 \implies du = 4t^3 \ dt \\ & = \frac 14 \int_1^2 \frac 1{u^2} du \\ & = \frac 1{4u} \ \bigg|_2^1 \\ & = \frac 14 - \frac 18 \\ & = \frac 18 \end{aligned}

Therefore, a + b = 1 + 8 = 9 a+b=1+8 = \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...