Integrals related "By Parts"!

Calculus Level 5

Consider the integrals: I 1 = 1 e ( 1 + x ) ( x + ln x ) 100 d x I_{1}=\displaystyle \int_{1}^{e} (1+x)(x+\ln x)^{100} dx and I 2 = sin 1 1 e π 2 ( 1 + e sin x + ln sin x ) 101 cos x d x I_{2}=\displaystyle \int_{\sin^{-1}\frac{1}{e}}^{\frac{π}{2}} (1+e \sin x+\ln \sin x)^{101} \cos x \ dx

If I 1 + e I 2 101 = e ( 1 + e ) 101 k 101 I_{1}+\dfrac{eI_2}{101} = \dfrac{e(1+e)^{101}-k}{101} , then find k k .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Corn
Mar 7, 2018

Let u = e sin x , u = e\sin x, so ln u = 1 + ln sin x \ln u = 1 + \ln \sin x and d u = e cos x d x . du = e \cos x \, dx. Then I 1 + e 101 I 2 = I 1 + 1 101 1 e ( u + ln u ) 101 d u = I 1 + 1 101 ( u ( u + ln u ) 101 1 e 1 e 101 u ( 1 + 1 / u ) ( u + ln u ) 100 d u ) = I 1 + 1 101 ( e ( e + 1 ) 101 1 ) 1 e ( u + 1 ) ( u + ln u ) 100 d u = 1 101 ( e ( e + 1 ) 101 1 ) , \begin{aligned} I_1 + \frac{e}{101} I_2 &= I_1 + \frac1{101} \int_1^e (u+\ln u)^{101} \, du \\ &= I_1 + \frac1{101} \left( u(u+\ln u)^{101} \Big|_1^e - \int_1^e 101u(1+1/u)(u+\ln u)^{100} \, du \right) \\ &= I_1 + \frac1{101} \left( e(e+1)^{101} - 1 \right) - \int_1^e (u+1)(u+\ln u)^{100} \, du \\ &= \frac1{101} \left( e(e+1)^{101} - 1 \right), \end{aligned} so the answer is just 1 . \fbox{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...