Integrate - 1

Calculus Level 3

1 e x 2 ln x d x = A + C e D B \int_{1}^{e} x^2 \ln{x} \, dx=\dfrac{A+C e^D}{B}

The above equation is true for positive integers A , B , C A,B,C and D D , where gcd ( A , C , B ) = 1 \gcd(A,C,B)=1 . Find A + B + C + D A+B+C+D .

Clarification : gcd ( ) \gcd(\cdot) denotes the greatest common divisor function.


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1. \boxed{1.-} Relevant wiki: Integration of logarithmic functions

Integrating by parts : 1 e x 2 ln x d x = 1 3 x 3 ln x 1 e 1 e 1 3 x 2 = \displaystyle \large \int_{1}^e x^2 \ln x dx = \frac{1}{3}x^3 \ln x\big|_{1}^e - \int_{1}^e \frac{1}{3}x^2 = = e 3 3 1 9 x 3 1 e = e 3 3 1 9 ( e 3 1 ) = 1 + 2 e 3 9 . . . = \large \frac{e^3}{3} - \frac{1}{9} x^3 \big|_{1}^e = \frac{e^3}{3} - \frac{1}{9} (e^3 - 1) = \frac{1 + 2e^3}{9}...

2. \boxed{2.-} Relevant wiki: Integration tricks

Let's call ( 1 ) (1) to I ( a ) I(a) ( a 1 ) \small (a \neq -1) I ( a ) = 1 e x a d x = x a + 1 a + 1 1 e = e a + 1 a + 1 1 a + 1 , I(a) = \int_{1}^e x^a dx = \frac{x^{a + 1}}{a + 1}\big|_{1}^e = \frac{e^{a +1}}{a +1} - \frac{1}{a + 1},\space \Rightarrow a I ( a ) = 1 e a x a d x = 1 e x a ln x d x = \frac{\partial }{\partial a} I(a) = \int_{1}^e \frac{\partial }{\partial a} x^a dx = \int_{1}^e x^a \ln x dx = derivating ( 1 ) (1) = e a + 1 ( a + 1 ) e a + 1 ( a + 1 ) 2 + 1 ( a + 1 ) 2 = a e a + 1 + 1 ( a + 1 ) 2 = \frac{e^{a +1}(a + 1) - e^{a +1}}{(a + 1)^2} + \frac{1}{(a + 1)^2} = \frac{ae^{a +1} + 1}{(a + 1)^2} \Rightarrow a I ( 2 ) = 1 e x 2 ln x d x = 2 e 3 + 1 9 . . . \frac{\partial}{\partial a} I(2) = \int_{1}^e x^2 \ln x dx = \frac{2e^3 + 1}{9} ...

Sam Bealing
Jun 19, 2016

Let u = ln x x d u = d x u=\ln{x} \implies x \cdot du=dx :

1 e x 2 ln x d x = 0 1 x 2 ln x x d u = 0 1 e 3 u u d u \int_{1}^{e} x^2 \ln{x} \: dx=\int_{0}^{1} x^2 \ln{x} \cdot x \: du=\int_{0}^{1} e^{3u} u \: du

= [ e 3 u u 3 ] 0 1 0 1 e 3 u 3 d u = e 3 3 [ e 3 u 9 ] 0 1 = e 3 3 e 3 1 9 \cdots=\left [\dfrac{e^{3u} u}{3} \right ]_{0}^{1}-\int_{0}^{1} \dfrac{e^{3u}}{3} \: du=\dfrac{e^3}{3}-\left [\dfrac{e^{3u}}{9} \right]_{0}{1}=\dfrac{e^3}{3}-\dfrac{e^3-1}{9}

= 1 + 2 e 3 9 A = 1 , B = 9 , C = 2 , D = 3 A + B + C + D = 15 \cdots=\dfrac{1+2e^3}{9} \implies A=1,B=9,C=2,D=3 \implies A+B+C+D=15

15 \color{#20A900}{\boxed{\boxed{15}}}

Moderator note:

What is the reason for doing the substitution first, as opposed to applying IBP directly?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...