Evaluate
∫ 0 ∞ ( x + x 2 + 1 ) 3 d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You should have put
\int_0^\infty
instead of
\int_0^infty
∫
0
i
n
f
t
y
(
x
+
x
2
+
1
)
3
d
x
=
∫
0
2
π
(
tan
θ
+
tan
2
θ
+
1
)
3
sec
2
θ
d
θ
↓
⏐
⏐
⏐
⏐
∫
0
∞
(
x
+
x
2
+
1
)
3
d
x
=
∫
0
2
π
(
tan
θ
+
tan
2
θ
+
1
)
3
sec
2
θ
d
θ
Log in to reply
Thanks, I forgot the "\". The braces are unnecessary.
Log in to reply
It gave me an error earlier I think. But now I see that there is no problem
Image is quite unclear....
Problem Loading...
Note Loading...
Set Loading...
Let x = tan θ ⇒ x = 0 , ∞ ⇒ θ = 0 , 2 π ⇒ d x = sec 2 θ d θ .
Then, we have:
\begin{aligned} \int_0^\infty \frac{dx}{(x + \sqrt{x^2+1})^3} & = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta}{(\tan \theta + \sqrt{\tan^2 \theta + 1})^3} d \theta \\ & = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta}{(\tan \theta + \sec \theta)^3}d \theta \\ & = \int_0^{\frac{\pi}{2}} \frac{\frac{1}{\cos^2 \theta}}{(\frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} )^3}d \theta \\ & = \int_0^{\frac{\pi}{2}} \frac{\color{#D61F06}{\cos \theta}}{(\color{#3D99F6}{\sin \theta} + 1)^3} \color{#D61F06}{d \theta} \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Let }u = \sin \theta} \quad \Rightarrow \color{#D61F06}{du = \cos \theta \space d \theta} \\ & = \int_\color{#3D99F6}{0}^\color{#3D99F6}{1} \frac{\color{#D61F06}{du}}{(\color{#3D99F6}{u} + 1)^3} \\ & = \left[ -\frac{1}{2(u+1)^2} \right]_0^1 = - \frac{1}{8} + \frac{1}{2} = \boxed{\dfrac{3}{8}} \end{aligned}