Can you reverse the process?

Calculus Level 2

1 a x 1 x + x d x = 4 \large\int_{1}^{a}\dfrac{x-1}{x+\sqrt{x}}dx=4

Let a > 1 a>1 be a constant satisfying the equation above. What is the value of a 2 + a + 1 \large a^2+a+1 ?


The answer is 91.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ikkyu San
May 16, 2015

1 a x 1 x + x d x = 4 1 a ( x ) 2 1 2 x ( x + 1 ) d x = 4 1 a ( x 1 ) ( x + 1 ) x ( x + 1 ) d x = 4 1 a x 1 x d x = 4 1 a 1 1 x d x = 4 1 a 1 x 1 2 d x = 4 [ x 2 x 1 2 ] x = 1 x = a = 4 a 2 a ( 1 2 ) = 4 a 2 a 3 = 0 ( a 3 ) ( a + 1 ) = 0 a = 3 , 1 \large\begin{aligned}\int_{1}^{\color{#D61F06}a}\frac{x-1}{x+\sqrt{x}}\text{d}x=&\ 4\\\int_{1}^{\color{#D61F06}a}\frac{(\color{#20A900}{\sqrt{x}})^2-\color{teal}1^2}{\sqrt{x}(\sqrt{x}+1)}\text{d}x=&\ 4\\\int_{1}^{\color{#D61F06}a}\frac{(\color{#20A900}{\sqrt{x}}-\color{teal}1)\color{#624F41}(\color{#20A900}{\sqrt{x}}+\color{teal}1\color{#624F41})}{\sqrt{x}\color{#624F41}(\color{#20A900}{\sqrt{x}}+\color{teal}1\color{#624F41})}\text{d}x=&\ 4\\\int_{1}^{\color{#D61F06}a}\frac{\sqrt{x}-1}{\sqrt{x}}\text{d}x=&\ 4\\\int_{1}^{\color{#D61F06}a}1-\dfrac{1}{\sqrt{x}}\text{d}x=&\ 4\\\int_{1}^{\color{#D61F06}a}1-x^{-\frac{1}{2}}\text{d}x=&\ 4\\\left[x-2x^{\frac{1}{2}}\right]_{x=1}^{x=\color{#D61F06}a}=&\ 4\\\color{#D61F06}a-2\sqrt{\color{#D61F06}a}-(1-2)=&\ 4\\\color{#D61F06}a-2\sqrt{\color{#D61F06}a}-3=&\ 0\\(\sqrt{\color{#D61F06}a}-3)(\sqrt{\color{#D61F06}a}+1)=&\ 0\\\sqrt{\color{#D61F06}a}=&\ 3,-1\end{aligned}

But a 0 \large\sqrt{\color{#D61F06}a}\geq0 and a > 1 \large\color{#D61F06}a>1 Hence, a = 3 a = 9 \large\sqrt{\color{#D61F06}a}=3\Rightarrow \color{#D61F06}{a=9}

Thus, a 2 + a + 1 = 9 2 + 9 + 1 = 81 + 10 = 91 \color{#D61F06}a^2+\color{#D61F06}a+1=\color{#D61F06}9^2+\color{#D61F06}9+1=81+10=\boxed{91}

Moderator note:

You always post the neatest solutions. Lovely flow of work and your reasoning are simple to understand. Fantastic work. Keep it up! It's a blessing to have you here!

Andrew Ellinor
Oct 7, 2015

Start by making the substitution x = u 2 x = u^2 . We do this because it will eliminate the square root in the denominator, which tend to be unmanageable to integrate. With the substitution x = u 2 , x = u^2, we have that d x = 2 u d u dx = 2udu , which converts the integral from 1 a x 1 x + x d x to 1 a ( u 2 1 ) u 2 + u 2 u d u . \int_{1}^{a}\dfrac{x-1}{x+\sqrt{x}}dx \hspace{.5cm} \text{ to } \hspace{.5cm} \int_{1}^{\sqrt{a}}\dfrac{(u^2-1)}{u^2+u}2udu.

Simplifying the integrand on the right reduces it to 1 a ( 2 u 2 ) d u = u 2 2 u 1 a = ( a 2 a ) ( 1 ) = 4 \int_{1}^{\sqrt{a}}(2u - 2)du = u^2 - 2u \Big|_{1}^{\sqrt{a}} = (a - 2\sqrt{a}) - (-1) = 4

The only solution to a 2 a + 1 = 4 a - 2\sqrt{a} + 1 = 4 is a = 9 a = 9 . Therefore, a 2 + a + 1 = 91 a^2 + a + 1 = 91 .

Bostang Palaguna
Dec 27, 2020

do a little bit of algebraic manipulation:

  • x 1 = ( x 1 ) ( x + 1 ) x-1=(\sqrt x-1)(\sqrt x+1)

  • x + ( x ) = ( x ) ( ( x ) + 1 ) x + \sqrt(x) = \sqrt(x) ( \sqrt(x) + 1 )

do some cancelation and evaluate the integral!

Ramesh Goenka
May 16, 2015

Moderator note:

Check your working again.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...