Integrate

Calculus Level 4

0 x 4 ( x + 1 ) 7 ln ( x + 1 ) d x \large\int_0^\infty \dfrac{x^4}{(x+1)^7} \ln(x+1)\, dx

If the integral above is equal to p q \dfrac pq , where p p and q q are coprime positive integers, find p + q p+q .


The answer is 629.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 18, 2016

I = 0 x 4 ln ( x + 1 ) ( x + 1 ) 7 d x Let u = 1 x + 1 x = 1 u 1 = 1 u u d x = 1 u 2 d u = 1 0 ( 1 u u ) 4 ( ln u ) u 7 u 2 d u = 1 0 ( u 1 ) 4 u ln u d u By integration by parts: f = ( u 1 ) 4 u , g = ln u = ( u 6 6 4 u 5 5 + 3 u 4 2 4 u 3 3 + u 2 2 ) ln u 1 0 1 0 ( u 5 6 4 u 4 5 + 3 u 3 2 4 u 2 3 + u 2 ) d u = 0 + u 6 36 4 u 5 25 + 3 u 4 8 4 u 3 9 + u 2 4 0 1 = 1 36 4 25 + 3 8 4 9 + 1 4 = 29 600 \begin{aligned} I & = \int_0^\infty \frac{x^4 \ln (x+1)}{(x+1)^7} dx \quad \quad \small \color{#3D99F6}{\text{Let }u = \frac{1}{x+1} \implies x = \frac{1}{u} - 1 = \frac{1-u}{u} \implies dx = - \frac{1}{u^2} du} \\ & = \int_1^0 \left(\frac{1-u}{u} \right)^4 \frac{(-\ln u)u^7}{-u^2} du \\ & = \int_1^0 (u-1)^4 u \ln u \ du \quad \quad \small \color{#3D99F6}{\text{By integration by parts: }f' = (u-1)^4u, \ g = \ln u} \\ & = \left( \frac{u^6}{6} -\frac{4u^5}{5} + \frac{3u^4}{2} - \frac{4u^3}{3} + \frac{u^2}{2} \right) \ln u \ \bigg|_1^0 - \int_1^0 \left( \frac{u^5}{6} -\frac{4u^4}{5} + \frac{3u^3}{2} - \frac{4u^2}{3} + \frac{u}{2} \right) du \\ & = 0 + \frac{u^6}{36} -\frac{4u^5}{25} + \frac{3u^4}{8} - \frac{4u^3}{9} + \frac{u^2}{4} \ \bigg|_0^1 \\ & = \frac{1}{36} -\frac{4}{25} + \frac{3}{8} - \frac{4}{9} + \frac{1}{4} \\ & = \frac{29}{600} \end{aligned}

p + q = 629 \implies p + q = \boxed{629}

Awesome substitution! Just a fantastic one !!

Arunava Das - 3 years, 4 months ago
Mark Hennings
May 18, 2016

Using the beta function B ( a , b ) = 0 x a 1 ( 1 + x ) a + b d x B(a,b) \; = \; \int_0^\infty \frac{x^{a-1}}{(1+x)^{a+b}}\,dx we see that 0 x 4 ln ( 1 + x ) ( 1 + x ) 7 d x = B b ( 5 , 2 ) = Γ ( a ) Γ ( a + b ) [ ψ ( a + b ) ψ ( b ) ] ( a , b ) = ( 5 , 2 ) \int_0^\infty \frac{x^4 \ln(1+x)}{(1+x)^7}\,dx \; =\; -\frac{\partial B}{\partial b}(5,2) \; = \; \left.\frac{\Gamma(a)}{\Gamma(a+b)}\big[\psi(a+b) - \psi(b)\big] \right|_{(a,b) = (5,2)} which is equal to Γ ( 5 ) Γ ( 7 ) [ ψ ( 7 ) ψ ( 2 ) ] = 1 30 [ 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ] = 29 600 \frac{\Gamma(5)}{\Gamma(7)}\big[\psi(7) - \psi(2)\big] \; = \; \tfrac{1}{30}\big[\tfrac12 + \tfrac13 + \tfrac14 + \tfrac15 + \tfrac16\big] \; = \; \tfrac{29}{600} making the answer 629 \boxed{629} .

Excellent !

We could simply substitute ln(x+1)=t . then rearrange to get t.(e^t -1)^4/e^6t. . then use by parts taking t as differentiable function

Arghyadeep Chatterjee - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...