Integrate!

Calculus Level pending

a ln x d x \large \int a^{\ln x} \, dx

Find the indefinite integral above for constant a a .

Ignore all arbitrary constants of integration .

x ln ( a + x ) ln ( a + x ) \frac{x^{\ln({a}+x)}}{\ln({a}+x)} x ln ( a ) + 1 ln ( a ) + 1 \frac{x^{\ln({a})+1}}{\ln({a})+1} x ln ( a + 1 ) ln ( a + 1 ) \frac{x^{\ln({a}+1)}}{\ln({ a}+1)} a ln ( a + x ) ln ( a + 1 ) \frac{\text{a}^{\ln({a}+x)}}{\ln({a}+1)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yasir Soltani
Jun 12, 2016

Note that a ln ( x ) = x ln ( a ) \text{a}^{\ln(x)}= x^{\ln(a)} therefore

a ln ( x ) d x = x ln ( a ) d x = x ln ( a ) + 1 ln ( a ) + 1 ( C = 0 ) \begin{aligned} \int \text{a}^{\ln(x)} \text{d}x &=\int x^{\ln(a)} \text{d}x \\ &=\frac{ x^{\ln(\text{a})+1}}{\ln(\text{a})+1} \quad (\text{C}=0)\\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...