Integrate!

Calculus Level 3

0 π 2 e x cos x d x = e π a 1 b \large \int_0^{\frac{\pi}{2}} e^x \cos x \ dx = \frac{e^{\frac{\pi}{a}}-1}{b} If a a and b b are prime numbers. Find a + b a+b


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By Integration by Parts

Applying integration by parts twice:

I = 0 π 2 e x cos x d x = e x sin x 0 π 2 0 π 2 e x sin x d x = e π 2 + e x cos x 0 π 2 0 π 2 e x cos x d x = e π 2 1 I = e π 2 1 2 \begin{aligned} I &= \int_0^\frac \pi 2 e^x \cos x \ dx \\ &= e^x \sin x \bigg|_0^\frac \pi 2 - \int_0^\frac \pi 2 e^x \sin x \ dx \\ &= e^\frac \pi 2 + e^x \cos x \bigg|_0^\frac \pi 2 - \int_0^\frac \pi 2 e^x \cos x \ dx \\ &= e^\frac \pi 2 - 1 - I \\ &=\boxed{ \dfrac {e^\frac \pi 2 - 1}2} \end{aligned}


By Complex Numbers

I = 0 π 2 e x cos x d x = 0 π 2 e x { e i x } d x = { 0 π 2 e ( 1 + i ) x d x } = { e ( 1 + i ) x 1 + i 0 π 2 } = { e π 2 e i π 2 1 1 + i } = { e π 2 ( cos π 2 + i sin π 2 ) 1 1 + i } = { ( i e π 2 1 ) ( 1 i ) ( 1 + i ) ( 1 i ) } = { e π 2 1 + i e π 2 + i 2 } = e π 2 1 2 \begin{aligned} I &= \int_0^\frac \pi 2 e^x \cos x \ dx \\ &= \int_0^\frac \pi 2 e^x \Re \left \{e^{ix}\right \} \ dx \\ &= \Re \left \{\int_0^\frac \pi 2 e^{(1+i)x} \ dx \right \} \\ &= \Re \left \{\frac {e^{(1+i)x}}{1+i} \bigg|_0^\frac \pi 2 \right \} \\ &= \Re \left \{\frac {e^\frac \pi 2e^{i\frac \pi 2}-1}{1+i} \right \} \\ &= \Re \left \{\frac {e^\frac \pi 2\left(\cos \frac \pi 2 + i \sin \frac \pi 2 \right) -1}{1+i} \right \} \\ &= \Re \left \{\frac {\left(i e^\frac \pi 2 -1\right)(1-i)}{(1+i)(1-i)} \right \} \\ &= \Re \left \{\frac {e^\frac \pi 2 -1 + ie^\frac \pi 2 +i}2 \right \} \\ & = \boxed{\dfrac {e^\frac \pi 2 -1}2 } \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...