Integrate along the Curve

Calculus Level pending

Let N = C ( ( x + y z ) d x + 2 x d y + x y z d z ) N = \int_C ((x+yz)\ dx + 2x\ dy + xyz\ dz) , where C C is two line segments, one from ( 1 , 0 , 1 ) (1,0,1) to ( 2 , 3 , 1 ) (2,3,1) and another from ( 2 , 3 , 1 ) (2,3,1) to ( 2 , 5 , 2 ) (2,5,2) . If N = a b N = \frac{a}{b} , where a a and b b are coprime positive integers, what is the value of a + b a+b ?


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

Let C 1 C_1 be the line segment from ( 1 , 0 , 1 ) (1,0,1) to ( 2 , 3 , 1 ) (2,3,1) . Since

r ( t ) = ( 1 t ) < 1 , 0 , 1 > + t < 2 , 3 , 1 > = < 1 + t , 3 t , 1 > , \boldsymbol{r}(t)=(1-t)<1,0,1>+t<2,3,1>=<1+t, 3t, 1>,

C 1 C_1 can be redefined as C 1 C_1 : x = 1 + t x=1+t , y = 3 t y=3t , z = 1 z=1 , and 0 t 1 0 \leq t \leq 1 .

Similarly, let C 2 C_2 be the line segment from ( 2 , 3 , 1 ) (2,3,1) to ( 2 , 5 , 2 ) (2,5,2) . Since

r ( t ) = ( 1 t ) < 2 , 3 , 1 > + t < 2 , 5 , 2 > = < 2 , 3 + 2 t , 1 + t > , \boldsymbol{r}(t)=(1-t)<2,3,1>+t<2,5,2>=<2, 3+2t, 1+t>,

C 2 C_2 can be redefined as C 2 C_2 : x = 2 x=2 , y = 3 + 2 t y=3+2t , z = 1 + t z=1+t , and 0 t 1 0 \leq t \leq 1 .

Thus, the given integral value can be calculated as follows:

C 1 [ ( x + y z ) d x + 2 x d y + x y z d z ] \int_{C_1} \left[(x+yz)\ dx + 2x\ dy + xyz\ dz\right]

= 0 1 [ ( 1 + t + ( 3 t ) ( 1 ) ) d t + 2 ( 1 + t ) 3 d t + ( 1 + t ) ( 3 t ) ( 1 ) 0 d t ] = 0 1 ( 10 t + 7 ) d t = [ 5 t 2 + 7 t ] 0 1 = 12 , \begin{aligned} &= \int_0^1 \left[\left( 1+t+(3t) (1) \right)\ dt + 2(1+t) 3\ dt + (1+t) (3t) (1) \cdot 0\ dt\right] \\ &= \int_0^1 (10t+7)\ dt = \left[ 5t^2+7t \right]_0^1 = 12, \\ \end{aligned}

C 2 [ ( x + y z ) d x + 2 x d y + x y z d z ] \int_{C_2} \left[(x+yz)\ dx + 2x\ dy + xyz\ dz\right] = 0 1 [ ( 2 + ( 3 + 2 t ) ( 1 + t ) ) 0 d t + 2 ( 2 ) 2 d t + ( 2 ) ( 3 + 2 t ) ( 1 + t ) d t ] = 0 1 ( 4 t 2 + 10 t + 14 ) d t = [ 4 3 t 3 + 5 t 2 + 14 t ] 0 1 = 61 3 . \begin{aligned} &= \int_0^1 \left[(2+(3+2t)(1+t)) \cdot 0\ dt + 2(2) \cdot 2\ dt + (2)(3+2t)(1+t)\ dt\right] \\ &= \int_0^1 (4t^2+10t+14)\ dt = \left[ \frac{4}{3}t^3 + 5t^2 + 14t \right]_0^1 = \frac{61}{3}. \\ \end{aligned}

Therefore, summing the two integrals, we have

C ( ( x + y z ) d x + 2 x d y + x y z d z ) = 12 + 61 3 = 97 3 . \int_C ((x+yz)\ dx + 2x\ dy + xyz\ dz) = 12+\frac{61}{3} = \frac{97}{3}.

This implies a = 97 a=97 and b = 3 b=3 , hence a + b = 100. a+b= 100.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...