integrate cosx/(1+sinx+cosx)

Calculus Level 3

0 π / 2 cos ( x ) 1 + sin ( x ) + cos ( x ) d x = \large \displaystyle \int_{0}^{\pi/2} \dfrac{\cos(x)}{1 + \sin(x) + \cos(x)} dx =


The answer is 0.439.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 19, 2018

The substitution x = 1 2 π y x = \tfrac12\pi-y shows that I = 0 1 2 π cos x 1 + sin x + cos x d x = 0 1 2 π sin y 1 + sin y + cos y d y I \; = \; \int_0^{\frac12\pi} \frac{\cos x}{1 + \sin x + \cos x}\,dx \; = \; \int_0^{\frac12\pi} \frac{\sin y}{1 + \sin y + \cos y}\,dy The substitution t = tan 1 2 x t=\tan\tfrac12x shows that J = 0 1 2 π 1 1 + sin x + cos x d x = 0 1 d t 1 + t = ln 2 J \; = \; \int_0^{\frac12\pi} \frac{1}{1 + \sin x + \cos x}\,dx \; = \; \int_0^1 \frac{dt}{1+t} \; = \; \ln2 Thus 2 I + J = 0 1 2 π d x = 1 2 π 2I + J \; = \; \int_0^{\frac12\pi}\,dx \; = \; \tfrac12\pi and hence I = 1 4 π 1 2 J = 1 4 π 1 2 ln 2 = 0.4388245731 I \; = \; \tfrac14\pi - \tfrac12J \; = \; \tfrac14\pi - \tfrac12\ln2 \; = \; \boxed{0.4388245731}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...