A calculus problem by Aly Ahmed

Calculus Level 3

0 π cot ( x ) sin ( 4 x ) d x = ? \int_0^\pi \cot(x) \sin(4x) \, dx = \, ? Give your answer to 2 decimal places.


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 22, 2020

I = 0 π cot x sin 4 x d x = 0 π 2 cot x sin 2 x cos 2 x d x = 0 π 4 cos x sin x cos x cos 2 x sin x d x = 0 π 4 cos 2 x cos 2 x d x = 0 π 2 ( 1 + cos 2 x ) cos 2 x d x = 0 π ( 2 cos 2 x + 2 cos 2 2 x ) d x = 0 π ( 2 cos 2 x + 1 + cos 4 x ) d x = sin 2 x + x + sin 4 x 4 0 π = π 3.14 \begin{aligned} I & = \int_0^\pi \cot x \sin 4x\ dx \\ & = \int_0^\pi 2 \cot x \sin 2x \cos 2x \ dx \\ & = \int_0^\pi \frac {4\cos x \sin x \cos x \cos 2x} {\sin x} \ dx \\ & = \int_0^\pi 4 \cos^2 x \cos 2x \ dx \\ & = \int_0^\pi 2(1+\cos 2 x) \cos 2x \ dx \\ & = \int_0^\pi(2\cos 2 x +2 \cos^2 2x) \ dx \\ & = \int_0^\pi(2\cos 2 x +1+\cos 4x) \ dx \\ &=\sin 2x + x + \frac {\sin 4x}4\ \bigg|_0^\pi \\ & = \pi \approx \boxed{3.14} \end{aligned}

sin ( 4 x ) = 4 cos 3 x sin x 4 cos x sin 3 x \sin (4x)=4\cos^3 x\sin x-4\cos x\sin^3 x

So, the integrand is 4 cos 4 x 4 cos 2 x sin 2 x = 4 cos 2 x ( cos 2 x sin 2 x ) 4\cos^4 x-4\cos^2 x\sin^2 x=4\cos^2 x(\cos^2 x-\sin^2 x)

The indefinite integral is sin ( 4 x ) + 4 sin ( 2 x ) + 4 x 4 + C \dfrac {\sin (4x)+4\sin (2x)+4x}{4}+C

Hence, the value of the definite integral is π 3.14 π\approx \boxed {3.14} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...