Integrate I guess

Calculus Level 3

2 e e 2 1 sin ( tan 1 ( x ) ) x 4 d x = sinh ( c ) b a \large \int_{\frac{2 e}{e^2-1}}^{\infty } \frac{\sin \left(\tan ^{-1}(x)\right)}{x^4} \, dx=\frac{\sinh (c)-b}{a}

where a a , b b , and c c are positive integers. Submit a + b + c a+b+c .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 20, 2017

I = 2 e e 2 1 sin ( tan 1 x ) x 4 d x = 2 e e 2 1 x x 4 x 2 + 1 d x = 2 e e 2 1 1 x 3 x 2 + 1 d x Let x = tan u d x = sec 2 u d u = α π 2 sec u tan 3 u d u where α = tan 1 2 e e 2 1 = α π 2 cos 2 u sin 3 u d u = α π 2 1 sin 2 u sin 3 u d u = α π 2 csc 3 u d u α π 2 csc u d u By reduction formula = cos x csc 2 x 2 α π 2 + 1 2 α π 2 csc u d u α π 2 csc u d u = e 4 1 8 e 2 1 2 α π 2 csc u d u Multiply up and down by csc u + cot u = e 2 e 2 8 1 2 α π 2 csc 2 u csc x cot x csc u + cot u d u = sinh 2 4 + 1 2 ln ( csc u + cot u ) α π 2 = sinh 2 4 1 2 = sinh 2 2 4 \begin{aligned} I & = \int_{\frac {2e}{e^2-1}}^\infty \frac {\color{#3D99F6}\sin \left(\tan^{-1} x\right)}{x^4} dx \\ & = \int_{\frac {2e}{e^2-1}}^\infty \frac {\color{#3D99F6}x}{x^4\color{#3D99F6}\sqrt{x^2+1}} dx \\ & = \int_{\frac {2e}{e^2-1}}^\infty \frac 1{x^3\sqrt{x^2+1}} dx & \small \color{#3D99F6} \text{Let }x = \tan u \implies dx = \sec^2 u \ du \\ & = \int_{\color{#3D99F6}\alpha}^\frac \pi 2 \frac {\sec u}{\tan^3 u}du & \small \color{#3D99F6} \text{where } \alpha = \tan^{-1} \frac {2e}{e^2-1} \\ & = \int_\alpha^\frac \pi 2 \frac {\cos^2 u}{\sin^3 u}du \\ & = \int_\alpha^\frac \pi 2 \frac {1-\sin^2 u}{\sin^3 u}du \\ & = {\color{#3D99F6}\int_\alpha^\frac \pi 2 \csc^3 u\ du} - \int_\alpha^\frac \pi 2 \csc u\ du & \small \color{#3D99F6} \text{By reduction formula} \\ & = {\color{#3D99F6}- \frac {\cos x \csc^2 x}2 \bigg|_\alpha^\frac \pi 2 + \frac 12 \int_\alpha^\frac \pi 2 \csc u\ du} - \int_\alpha^\frac \pi 2 \csc u\ du \\ & = \frac {e^4-1}{8e^2} - {\color{#3D99F6}\frac 12 \int_\alpha^\frac \pi 2 \csc u\ du} & \small \color{#3D99F6} \text{Multiply up and down by }\csc u + \cot u \\ & = \frac {e^2-e^{-2}}8 - {\color{#3D99F6}\frac 12 \int_\alpha^\frac \pi 2 - \frac {-\csc^2 u - \csc x \cot x}{\csc u + \cot u}\ du} \\ & = \frac {\sinh 2}4 + \frac 12 \ln (\csc u + \cot u) \bigg|_\alpha^\frac \pi 2 \\ & = \frac {\sinh 2}4 - \frac 12 \\ & = \frac {\sinh 2-2}4 \end{aligned}

a + b + c = 4 + 2 + 2 = 8 \implies a+b+c = 4+2+2 = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...