∫ 0 ∞ 1 + x 2 lo g ( 1 + x 2 ) d x = λ ∫ 0 1 1 + x 2 lo g ( 1 + x ) d x
If the equation above is true, find λ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let I 1 = ∫ 0 ∞ 1 + x 2 lo g ( 1 + x 2 ) d x I 2 = ∫ 0 1 1 + x 2 lo g ( 1 + x ) d x
First calculate I 2 :
Let tan − 1 x = t ⟹ 1 + x 2 d x = d t
I 2 = ∫ 0 4 π lo g ( 1 + tan t ) d t
I 2 can be easily calculated by using the following fact:
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
I 2 = ∫ 0 4 π lo g ( 1 + tan ( 4 π − t ) ) d t
I 2 = ∫ 0 4 π lo g ( 1 + 1 + tan t 1 − tan t ) ) d t
I 2 = ∫ 0 4 π lo g ( 2 ) d t − I 2 ⟹ I 2 = 8 π l o g 2
For I 1 , first divide it into two intervals :
I 1 = ∫ 0 1 1 + x 2 lo g ( 1 + x 2 ) d x + ∫ 1 ∞ 1 + x 2 lo g ( 1 + x 2 ) d x
For second interval let x 1 = t ⟹ d x = − t 2 1 d t
I 1 = ∫ 0 1 1 + x 2 lo g ( 1 + x 2 ) d x + ∫ 0 1 t 2 ( 1 + t 2 1 ) lo g ( 1 + t 2 1 ) d t
I 1 = ∫ 0 1 1 + x 2 lo g ( 1 + x 2 ) d x + ∫ 0 1 x 2 ( 1 + x 2 1 ) lo g ( 1 + x 2 1 ) d x
I 1 = 2 ∫ 0 1 1 + x 2 lo g ( 1 + x 2 ) d x − 2 ∫ 0 1 ( 1 + x 2 ) l o g x d x
Using the substitution: tan − 1 x = t , we get :
I 1 = π lo g 2
I 1 can be calculated by using following fact:
∫ 0 2 π lo g ( sin x ) d x = − 2 π lo g 2
So, I 2 I 1 = λ = 8
Mayank, like other functions such as sin , cos , ∑ , ∫ , you should put a backslash "\" in front of log like lo g 2 -- see it is not italic because it is a function and there is automatically a space between log and 2. See without a backslash l o g 2 .
Problem Loading...
Note Loading...
Set Loading...
I 1 = ∫ 0 ∞ 1 + x 2 ln ( 1 + x 2 ) d x = ∫ 0 2 π ln ( sec 2 θ ) d θ = − 2 ∫ 0 2 π ln ( cos θ ) d θ = − ∫ 0 2 π ( ln ( cos θ ) + ln ( sin θ ) ) d θ = − ∫ 0 2 π ln ( sin θ cos θ ) d θ = − ∫ 0 2 π ln ( 2 sin 2 θ ) d θ = − ∫ 0 2 π ln ( sin 2 θ ) d θ + ∫ 0 2 π ln 2 d θ = − 2 1 ∫ 0 π ln ( sin ϕ ) d ϕ + 2 π ln 2 = − ∫ 0 2 π ln ( sin ϕ ) d ϕ + 2 π ln 2 = 2 I 1 + 2 π ln 2 = π ln 2 Let x = tan θ ⟹ d x = sec 2 θ d θ By identity ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x Let ϕ = 2 θ ⟹ d ϕ = 2 d θ Note that sin x is symmetrical about 2 π Note that ∫ 0 2 π ln ( sin θ ) d θ = ∫ 0 2 π ln ( cos θ ) d θ = − 2 I 1
I 2 = ∫ 0 1 1 + x 2 ln ( 1 + x ) d x = ∫ 0 4 π ln ( 1 + tan θ ) d θ = 2 1 ∫ 0 4 π ( ln ( 1 + tan θ ) + ln ( 1 + tan ( 4 π − θ ) ) ) d θ = 2 1 ∫ 0 4 π ( ln ( 1 + tan θ ) + ln ( 1 + 1 + tan θ 1 − tan θ ) ) d θ = 2 1 ∫ 0 4 π ( ln ( 1 + tan θ ) + ln ( 1 + tan θ 2 ) ) d θ = 2 1 ∫ 0 4 π ( ln ( 1 + tan θ ) + ln 2 − ln ( 1 + tan θ ) ) d θ = 2 1 ∫ 0 4 π ln 2 d θ = 8 π ln 2 = 8 1 I 1 Let x = tan θ ⟹ d x = sec 2 θ d θ By identity ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
⟹ λ = 8