Integrate it #1

Calculus Level 3

0 log ( 1 + x 2 ) 1 + x 2 d x = λ 0 1 log ( 1 + x ) 1 + x 2 d x \large \int_{0}^{\infty} \frac{\log(1+x^2)}{1+x^2}dx=\lambda \int_{0}^{1} \frac{\log(1+x)}{1+x^2}dx

If the equation above is true, find λ \lambda .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I 1 = 0 ln ( 1 + x 2 ) 1 + x 2 d x Let x = tan θ d x = sec 2 θ d θ = 0 π 2 ln ( sec 2 θ ) d θ = 2 0 π 2 ln ( cos θ ) d θ By identity a b f ( x ) d x = a b f ( a + b x ) d x = 0 π 2 ( ln ( cos θ ) + ln ( sin θ ) ) d θ = 0 π 2 ln ( sin θ cos θ ) d θ = 0 π 2 ln ( sin 2 θ 2 ) d θ = 0 π 2 ln ( sin 2 θ ) d θ + 0 π 2 ln 2 d θ Let ϕ = 2 θ d ϕ = 2 d θ = 1 2 0 π ln ( sin ϕ ) d ϕ + π ln 2 2 Note that sin x is symmetrical about π 2 = 0 π 2 ln ( sin ϕ ) d ϕ + π ln 2 2 Note that 0 π 2 ln ( sin θ ) d θ = 0 π 2 ln ( cos θ ) d θ = I 1 2 = I 1 2 + π ln 2 2 = π ln 2 \begin{aligned} I_1 & = \int_0^\infty \frac {\ln(1+x^2)}{1+x^2} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \int_0^\frac \pi 2 \ln(\sec^2 \theta) \ d\theta \\ & = - 2 \int_0^\frac \pi 2 \ln(\cos \theta) \ d\theta & \small \color{#3D99F6} \text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = - \int_0^\frac \pi 2 \left(\ln(\cos \theta) + \ln (\sin \theta) \right) \ d\theta \\ & = - \int_0^\frac \pi 2 \ln(\sin \theta \cos \theta) \ d\theta \\ & = - \int_0^\frac \pi 2 \ln \left(\frac {\sin 2 \theta}2 \right) \ d\theta \\ & = - {\color{#3D99F6} \int_0^\frac \pi 2 \ln (\sin 2 \theta) \ d\theta} + \int_0^\frac \pi 2 \ln 2 \ d\theta & \small \color{#3D99F6} \text{Let }\phi = 2\theta \implies d \phi = 2\ d\theta \\ & = - {\color{#3D99F6} \frac 12 \int_0^\pi \ln (\sin \phi) \ d\phi} + \frac {\pi \ln 2}2 & \small \color{#3D99F6} \text{Note that }\sin x \text{ is symmetrical about }\frac \pi 2 \\ & = - {\color{#3D99F6} \int_0^{\color{#D61F06}\frac \pi 2} \ln (\sin \phi) \ d\phi} + \frac {\pi \ln 2}2 & \small \color{#3D99F6} \text{Note that } \int_0^\frac \pi 2 \ln(\sin \theta) \ d\theta = \int_0^\frac \pi 2 \ln(\cos \theta) \ d\theta = - \frac {I_1}2 \\ & = {\color{#3D99F6} \frac {I_1}2} + \frac {\pi \ln 2}2 \\ & = \pi \ln 2 \end{aligned}


I 2 = 0 1 ln ( 1 + x ) 1 + x 2 d x Let x = tan θ d x = sec 2 θ d θ = 0 π 4 ln ( 1 + tan θ ) d θ By identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 4 ( ln ( 1 + tan θ ) + ln ( 1 + tan ( π 4 θ ) ) ) d θ = 1 2 0 π 4 ( ln ( 1 + tan θ ) + ln ( 1 + 1 tan θ 1 + tan θ ) ) d θ = 1 2 0 π 4 ( ln ( 1 + tan θ ) + ln ( 2 1 + tan θ ) ) d θ = 1 2 0 π 4 ( ln ( 1 + tan θ ) + ln 2 ln ( 1 + tan θ ) ) d θ = 1 2 0 π 4 ln 2 d θ = π ln 2 8 = 1 8 I 1 \begin{aligned} I_2 & = \int_0^1 \frac {\ln(1+x)}{1+x^2} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \int_0^\frac \pi 4 \ln(1 + \tan \theta) \ d\theta & \small \color{#3D99F6} \text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 4 \left( \ln(1 + \tan \theta) + \ln \left(1 + \tan \left(\frac \pi 4 - \theta\right) \right) \right) d\theta \\ & = \frac 12 \int_0^\frac \pi 4 \left( \ln(1 + \tan \theta) + \ln \left(1 + \frac {1-\tan \theta}{1+\tan \theta} \right) \right) d\theta \\ & = \frac 12 \int_0^\frac \pi 4 \left( \ln(1 + \tan \theta) + \ln \left(\frac 2{1+\tan \theta} \right) \right) d\theta \\ & = \frac 12 \int_0^\frac \pi 4 \left( \ln(1 + \tan \theta) + \ln 2 - \ln (1+\tan \theta) \right) d\theta \\ & = \frac 12 \int_0^\frac \pi 4 \ln 2 \ d\theta \\ & = \frac {\pi \ln 2}8 = \frac 18 I_1 \end{aligned}


λ = 8 \implies \lambda = \boxed{8}

Let I 1 = 0 log ( 1 + x 2 ) 1 + x 2 d x I_{1}=\displaystyle\int_{0}^{\infty} \dfrac{\log(1+x^2)}{1+x^2}dx I 2 = 0 1 log ( 1 + x ) 1 + x 2 d x I_{2}= \displaystyle\int_{0}^{1} \dfrac{\log(1+x)}{1+x^2}dx

First calculate I 2 I_{2} :

Let tan 1 x = t d x 1 + x 2 = d t \tan^{-1}x=t \implies \dfrac{dx}{1+x^2}=dt

I 2 = 0 π 4 log ( 1 + tan t ) d t I_{2}=\displaystyle\int_{0}^{\frac{π}{4}} \log(1+ \tan t)dt

I 2 I_{2} can be easily calculated by using the following fact:

a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle\int_{a}^{b} f(x)dx= \displaystyle\int_{a}^{b} f(a+b-x)dx

I 2 = 0 π 4 log ( 1 + tan ( π 4 t ) ) d t I_{2}=\displaystyle\int_{0}^{\frac{π}{4}} \log(1+ \tan(\frac{π}{4}-t))dt

I 2 = 0 π 4 log ( 1 + 1 tan t 1 + tan t ) ) d t I_{2}=\displaystyle\int_{0}^{\frac{π}{4}} \log(1+ \dfrac{1-\tan t}{1+\tan t}))dt

I 2 = 0 π 4 log ( 2 ) d t I 2 I 2 = π 8 l o g 2 I_{2}=\displaystyle\int_{0}^{\frac{π}{4}} \log(2)dt - I_{2} \implies I_{2}= \dfrac{π}{8}log2

For I 1 I_{1} , first divide it into two intervals :

I 1 = 0 1 log ( 1 + x 2 ) 1 + x 2 d x + 1 log ( 1 + x 2 ) 1 + x 2 d x I_{1}=\displaystyle\int_{0}^{1} \dfrac{\log(1+x^2)}{1+x^2}dx +\displaystyle\int_{1}^{\infty} \dfrac{\log(1+x^2)}{1+x^2}dx

For second interval let 1 x = t d x = 1 t 2 d t \dfrac{1}{x}=t \implies dx=-\dfrac{1}{t^2}dt

I 1 = 0 1 log ( 1 + x 2 ) 1 + x 2 d x + 0 1 log ( 1 + 1 t 2 ) t 2 ( 1 + 1 t 2 ) d t I_{1}=\displaystyle\int_{0}^{1} \dfrac{\log(1+x^2)}{1+x^2}dx +\displaystyle\int_{0}^{1} \dfrac{\log(1+\dfrac{1}{t^2})}{t^2(1+\dfrac{1}{t^2})}dt

I 1 = 0 1 log ( 1 + x 2 ) 1 + x 2 d x + 0 1 log ( 1 + 1 x 2 ) x 2 ( 1 + 1 x 2 ) d x I_{1}=\displaystyle\int_{0}^{1} \dfrac{\log(1+x^2)}{1+x^2}dx +\displaystyle\int_{0}^{1} \dfrac{\log(1+\dfrac{1}{x^2})}{x^2(1+\dfrac{1}{x^2})}dx

I 1 = 2 0 1 log ( 1 + x 2 ) 1 + x 2 d x 2 0 1 l o g x ( 1 + x 2 ) d x I_{1}=2\displaystyle\int_{0}^{1} \dfrac{\log(1+x^2)}{1+x^2}dx -2\displaystyle\int_{0}^{1}\dfrac{logx}{(1+x^2)}dx

Using the substitution: tan 1 x = t \tan^{-1}x=t , we get :

I 1 = π log 2 I_{1}=π\log2

I 1 I_{1} can be calculated by using following fact:

0 π 2 log ( sin x ) d x = π 2 log 2 \displaystyle\int_{0}^{\frac{π}{2}} \log(\sin x)dx = -\dfrac{π}{2}\log2

So, I 1 I 2 = λ = 8 \dfrac{I_{1}}{I_{2}}=\lambda=\boxed{8}

Mayank, like other functions such as sin \sin , cos \cos , \sum , \int , you should put a backslash "\" in front of log like log 2 \log 2 -- see it is not italic because it is a function and there is automatically a space between log and 2. See without a backslash l o g 2 log 2 .

Chew-Seong Cheong - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...