∫ 1 / 3 1 x 6 ( x 2 + 1 ) x 2 + 3 d x
Find the value of the closed form of the above integral.
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For variety, I am showing another way to solve the integral. Since the nominator P ( x ) and denominator Q ( x ) of the integrand are polynomials with real coefficients and P ( x ) / Q ( x ) is a proper fraction, and Q ( x ) has multiple roots, we can use the Ostrogradsky method which gives the following.
∫ Q ( x ) P ( x ) d x = Q 1 ( x ) P 1 ( x ) + ∫ Q 2 ( x ) P 2 ( x ) d x
where Q 1 ( x ) is the greatest common divisor of Q ( x ) and its derivative Q ′ ( x ) , while Q 2 ( x ) = Q ( x ) / Q 1 ( x ) .
As Q ( x ) = x 6 ( x 2 + 1 ) , Q ′ ( x ) = 6 x 5 ( x 2 + 1 ) + 2 x 7 , the greatest common divisor Q 1 ( x ) = x 5 and Q 2 = x ( x 2 + 1 ) . Let P 1 ( x ) = A x 4 + B x 3 + C x 2 + D x + E and P 2 ( x ) = F x 2 + G x + H . Then, we have:
∫ 3 1 1 x 6 ( x 2 + 1 ) x 2 + 3 d x x 6 ( x 2 + 1 ) x 2 + 3 x 2 + 3 = x 5 A x 4 + B x 3 + C x 2 + D x + E + ∫ x ( x 2 + 1 ) F x 2 + G x + H d x = x 6 ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x − 5 ( A x 4 + B x 3 + C x 2 + D x + E ) + x ( x 2 + 1 ) F x 2 + G x + H = ( ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x − 5 ( A x 4 + B x 3 + C x 2 + D x + E ) ) ( x 2 + 1 ) + ( F x 2 + G x + H ) x 5 = ( − A x 4 − 2 B x 3 − 3 C x 2 − 4 D x − 5 E ) ( x 2 + 1 ) + F x 7 + G x 6 + H x 5 = F x 7 + ( G − A ) x 6 + ( H − 2 B ) x 5 − ( A + 3 C ) x 4 − ( 2 B + 4 D ) x 3 − ( 3 C + 5 E ) x 2 − 4 D x − 5 E
Equating the coefficients of x n on both sides, we get A = − 2 , B = 0 , C = 3 2 , D = 0 , E = − 5 3 , F = 0 , G = − 2 and H = 0 . Then, we have:
∫ 3 1 1 x 6 ( x 2 + 1 ) x 2 + 3 d x = x 5 − 2 x 4 + 3 2 x 2 − 5 3 ∣ ∣ ∣ ∣ 3 1 1 + ∫ 3 1 1 x ( x 2 + 1 ) − 2 x d x = 1 5 x 5 − 3 0 x 4 + 1 0 x 2 − 9 ∣ ∣ ∣ ∣ 3 1 1 − 2 ∫ 3 1 1 x 2 + 1 1 d x = − 1 5 2 9 + 5 2 7 3 − 2 tan − 1 x ∣ ∣ ∣ ∣ 3 1 1 = − 1 5 2 9 + 5 2 7 3 − 2 π + 3 π ≈ 6 . 8 9 6
Problem Loading...
Note Loading...
Set Loading...
Let I = ∫ 1 / 3 1 x 6 ( x 2 + 1 ) x 2 + 3 d x
⇒ I = ∫ 1 / 3 1 x 6 ( x 2 + 1 ) ( x 2 + 1 ) + 2 d x = ∫ 1 / 3 1 x 6 1 + x 6 ( x 2 + 1 ) 2 d x
Using partial fraction decomposition in the second part and adding the first term to it,we finally get
∫ 1 / 3 1 − x 2 + 1 2 + x 2 2 − x 4 2 + x 6 3 d x ⇒ I = [ − 2 arctan ( x ) − x 2 + 3 x 3 2 − 5 x 5 3 ] 1 / 3 1 ⇒ I = [ − 2 arctan ( x ) − x 2 + 3 x 3 2 − 5 x 5 3 ] 1 / 3 1 = 1 5 5 π + 3 9 / 2 − 3 0 1 5 π + 5 8 = 6 . 8 9 6 1 4