Integrate it - 2

Calculus Level 4

1 / 3 1 x 2 + 3 x 6 ( x 2 + 1 ) d x \large\displaystyle \int^{1}_{{1/\sqrt3}}{\dfrac{x^2+3}{x^6(x^2+1 )} \, dx }

Find the value of the closed form of the above integral.

Give your answer to 3 decimal places.


The answer is 6.8961.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Swagat Panda
Oct 2, 2016

Let I = 1 / 3 1 x 2 + 3 x 6 ( x 2 + 1 ) d x I=\displaystyle \int^{1}_{{1/ \sqrt3}}{\dfrac{x^2+3}{x^6\left(x^2+1 \right)}\mathrm{d}x }

I = 1 / 3 1 ( x 2 + 1 ) + 2 x 6 ( x 2 + 1 ) d x = 1 / 3 1 1 x 6 + 2 x 6 ( x 2 + 1 ) d x \Rightarrow I=\displaystyle \int^{1}_{{1/\sqrt3}}{\dfrac{\left(x^2+1 \right) +2}{x^6\left(x^2+1 \right)}\mathrm{d}x= \int^{1}_{{1/ \sqrt3}}{\dfrac{1}{x^6}+\dfrac{2}{x^6\left(x^2+1 \right)}}}\mathrm{d}x

Using partial fraction decomposition in the second part and adding the first term to it,we finally get

1 / 3 1 2 x 2 + 1 + 2 x 2 2 x 4 + 3 x 6 d x \displaystyle\int^{1}_{{1/\sqrt3}}{-\dfrac{2}{x^2+1}+\dfrac{2}{x^2}-\dfrac{2}{x^4}+\dfrac{3}{x^6}\,\mathrm{d}x} I = [ 2 arctan ( x ) 2 x + 2 3 x 3 3 5 x 5 ] 1 / 3 1 \Rightarrow I= \left[-2\arctan\left(x\right)-\dfrac{2}{x}+\dfrac{2}{3x^3}-\dfrac{3}{5x^5}\right]_{1/\sqrt3}^{1} I = [ 2 arctan ( x ) 2 x + 2 3 x 3 3 5 x 5 ] 1 / 3 1 = 5 π + 3 9 / 2 15 15 π + 58 30 = 6.89614 \Rightarrow I=\left[-2\arctan\left(x\right)-\dfrac{2}{x}+\dfrac{2}{3x^3}-\dfrac{3}{5x^5} \right]_{1/\sqrt3}^{1} =\dfrac{5{\pi}+3^{9/2}}{15}-\dfrac{15{\pi}+58}{30}=\boxed{6.89614}

For variety, I am showing another way to solve the integral. Since the nominator P ( x ) P (x) and denominator Q ( x ) Q (x) of the integrand are polynomials with real coefficients and P ( x ) / Q ( x ) P (x) / Q (x) is a proper fraction, and Q ( x ) Q (x) has multiple roots, we can use the Ostrogradsky method which gives the following.

P ( x ) Q ( x ) d x = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) d x \int \frac {P(x)}{Q(x)} dx = \frac {P_1(x)}{Q_1(x)} + \int \frac {P_2(x)}{Q_2(x)} dx

where Q 1 ( x ) Q_1(x) is the greatest common divisor of Q ( x ) Q (x) and its derivative Q ( x ) Q' (x) , while Q 2 ( x ) = Q ( x ) / Q 1 ( x ) Q_2(x) = Q (x) / Q_1(x) .

As Q ( x ) = x 6 ( x 2 + 1 ) Q(x) = x^6(x^2+1) , Q ( x ) = 6 x 5 ( x 2 + 1 ) + 2 x 7 Q'(x) = 6x^5(x^2+1) + 2x^7 , the greatest common divisor Q 1 ( x ) = x 5 Q_1(x) = x^5 and Q 2 = x ( x 2 + 1 ) Q_2 = x(x^2+1) . Let P 1 ( x ) = A x 4 + B x 3 + C x 2 + D x + E P_1(x) = Ax^4+Bx^3+Cx^2+Dx+E and P 2 ( x ) = F x 2 + G x + H P_2(x) = Fx^2+Gx + H . Then, we have:

1 3 1 x 2 + 3 x 6 ( x 2 + 1 ) d x = A x 4 + B x 3 + C x 2 + D x + E x 5 + F x 2 + G x + H x ( x 2 + 1 ) d x x 2 + 3 x 6 ( x 2 + 1 ) = ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x 5 ( A x 4 + B x 3 + C x 2 + D x + E ) x 6 + F x 2 + G x + H x ( x 2 + 1 ) x 2 + 3 = ( ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x 5 ( A x 4 + B x 3 + C x 2 + D x + E ) ) ( x 2 + 1 ) + ( F x 2 + G x + H ) x 5 = ( A x 4 2 B x 3 3 C x 2 4 D x 5 E ) ( x 2 + 1 ) + F x 7 + G x 6 + H x 5 = F x 7 + ( G A ) x 6 + ( H 2 B ) x 5 ( A + 3 C ) x 4 ( 2 B + 4 D ) x 3 ( 3 C + 5 E ) x 2 4 D x 5 E \begin{aligned} \int_{\frac 1{\sqrt 3}}^1 \frac {x^2+3}{x^6(x^2+1)} dx & = \frac {Ax^4+Bx^3+Cx^2+Dx+E}{x^5} + \int \frac {Fx^2+Gx + H}{x(x^2+1)} dx \\ \frac {x^2+3}{x^6(x^2+1)} & = \frac {(4Ax^3+3Bx^2+2Cx+D)x-5(Ax^4+Bx^3+Cx^2+Dx+E)}{x^6} + \frac {Fx^2+Gx + H}{x(x^2+1)} \\ x^2+3 & = \left((4Ax^3+3Bx^2+2Cx+D)x-5(Ax^4+Bx^3+Cx^2+Dx+E)\right)(x^2+1) + (Fx^2+Gx + H)x^5 \\ & = \left(-Ax^4-2Bx^3-3Cx^2-4Dx-5E\right)(x^2+1) + Fx^7+Gx^6 + Hx^5 \\ & = Fx^7 + (G-A)x^6 + (H-2B)x^5- (A+3C)x^4-(2B+4D)x^3-(3C+5E)x^2-4Dx-5E \end{aligned}

Equating the coefficients of x n x^n on both sides, we get A = 2 A=-2 , B = 0 B=0 , C = 2 3 C= \frac 23 , D = 0 D=0 , E = 3 5 E=-\frac 35 , F = 0 F=0 , G = 2 G=-2 and H = 0 H=0 . Then, we have:

1 3 1 x 2 + 3 x 6 ( x 2 + 1 ) d x = 2 x 4 + 2 3 x 2 3 5 x 5 1 3 1 + 1 3 1 2 x x ( x 2 + 1 ) d x = 30 x 4 + 10 x 2 9 15 x 5 1 3 1 2 1 3 1 1 x 2 + 1 d x = 29 15 + 27 3 5 2 tan 1 x 1 3 1 = 29 15 + 27 3 5 π 2 + π 3 6.896 \begin{aligned} \int_{\frac 1{\sqrt 3}}^1 \frac {x^2+3}{x^6(x^2+1)} dx & = \frac {-2x^4+\frac 23 x^2 - \frac 35}{x^5} \bigg|_{\frac 1{\sqrt 3}}^1+ \int_{\frac 1{\sqrt 3}}^1 \frac {-2x}{x(x^2+1)} dx \\ & = \frac {-30x^4+10 x^2 - 9}{15x^5} \bigg|_{\frac 1{\sqrt 3}}^1- 2\int_{\frac 1{\sqrt 3}}^1 \frac 1{x^2+1} dx \\ & =-\frac {29}{15}+\frac {27\sqrt 3}5- 2\tan^{-1} x \bigg|_{\frac 1{\sqrt 3}}^1 \\ & =-\frac {29}{15}+\frac {27\sqrt 3}5 - \frac \pi 2 + \frac \pi 3 \\ & \approx \boxed{6.896} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...