Integrate it

Calculus Level 3

0 π x 1 + sin x d x \large \int^{\pi}_{0} {\dfrac{x}{1+\sin{x}} \, {d}x}

Find the value of the closed form of the above integral.

Give your answer to 3 decimal places.


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Swagat Panda
Sep 23, 2016

Let 0 π x 1 + sin x d x = I \text{Let }\displaystyle \int^{\pi}_{0} {\dfrac{x}{1+\sin{x}}\mathrm{d}x}=I By using the property 0 2 a f ( x ) = 0 a f ( x ) d x + 0 a f ( 2 a x ) d x we get I = 0 2 ( π / 2 ) x 1 + sin x d x = 0 π / 2 ( ( π x ) 1 + sin ( π x ) + x 1 + sin x ) d x = 0 π π 1 + sin x d x \text{By using the property }\boxed{\displaystyle\int _{ 0 }^{ 2a }{ f(x) } =\displaystyle\int _{ 0 }^{ a }{ f(x)\mathrm{d}x } +\displaystyle\int _{ 0 }^{ a }{ f(2a-x)\mathrm{d}x }} \text{ we get} \\ \Rightarrow I=\displaystyle\int^{2(\pi/2)}_{0} {\dfrac{x}{1+\sin{x}}\mathrm{d}x} =\displaystyle\int^{\pi/2}_{0}{\left(\dfrac{(\pi-x)}{1+\sin{(\pi-x)}}+\dfrac{x}{1+\sin{x}}\right)\mathrm{d}x}=\displaystyle \int^{\pi}_{0}{\dfrac{\pi}{1+\sin{x}}\mathrm{d}x} I = 2 π 0 π sec 2 ( x 2 ) ( 1 + tan ( x 2 ) ) 2 d x \Rightarrow I= 2\pi \displaystyle \int^{\pi}_{0}{\frac{\sec^{2}{\left(\dfrac x2 \right)}}{\left(1+\tan{\left(\dfrac x2\right)}\right)^{2}}\mathrm{d}x} Now, let ( 1 + tan ( x 2 ) ) = t d t = sec 2 ( x 2 ) d x \text{ Now, let } \left(1+\tan{\left(\dfrac x2 \right)}\right)=t \Rightarrow \mathrm{d}t=\sec^{2}{\left(\dfrac x2\right)}\mathrm{d}x I = 2 π 1 2 1 t 2 d t = 2 π [ 1 t ] 1 2 = 2 π ( 1 2 ) = π \Rightarrow I= 2\pi \displaystyle \int^{2}_{1}{\dfrac{1}{t^{2}}\mathrm{d}t }=2\pi\left[ -\dfrac{1}{t} \right]^{2}_{1}=2\pi \left(\dfrac12 \right)=\boxed{\pi}

Chew-Seong Cheong
Sep 24, 2016

I = 0 π x 1 + sin x d x By identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π ( x 1 + sin x + π x 1 + sin ( π x ) ) d x Note that sin ( π x ) = sin x = 1 2 0 π π 1 + sin x d x Let t = tan x 2 , sin x = 2 t 1 + t 2 , d x = 2 d t 1 + t 2 = π 2 0 2 ( 1 + t 2 ) ( 1 + 2 t 1 + t 2 ) d t = π 0 1 ( 1 + t ) 2 d t = π 1 + t 0 = π 3.1415 \begin{aligned} I & = \int_0^\pi \frac x{1+\sin x} dx & \small \color{#3D99F6}{\text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b - x) \ dx} \\ & = \frac 12 \int_0^\pi \left(\frac x{1+\sin x} + \frac {\pi-x}{1+\color{#3D99F6}{\sin (\pi-x)}}\right) dx & \small \color{#3D99F6}{\text{Note that }\sin (\pi-x) = \sin x} \\ & = \frac 12 \int_0^\pi \frac \pi{1+\sin x} dx & \small \color{#3D99F6}{\text{Let } t = \tan \frac x2, \ \sin x = \frac {2t}{1+t^2}, \ dx = \frac {2 \ dt}{1+t^2}} \\ & = \frac \pi 2 \int_0^\infty \frac 2{(1+t^2)\left(1+\frac {2t}{1+t^2}\right)} dt \\ & = \pi \int_0^\infty \frac 1{(1+t)^2} dt \\ & = \frac \pi {1+t} \bigg|_\infty^0 = \pi \approx \boxed{3.1415} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...