Integrate It!

Calculus Level 4

1 + cos 8 x cot 2 x tan 2 x d x = P Q cos 8 x + C \large{\displaystyle{\int \dfrac{1+\cos8x}{\cot2x - \tan2x}}} \, dx= \dfrac PQ \cos8x +C

The equation above holds true for coprime integers P P and Q Q , with P P negative, find P + Q |P+Q| .


Clarification: C C denotes the arbitrary constant of integration .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anirudh Sreekumar
Mar 31, 2017

Let, I = 1 + cos 8 x cot 2 x tan 2 x d x = 2 cos 2 4 x cos 2 x sin 2 x sin 2 x cos 2 x d x = cos 2 4 x cos 2 2 x sin 2 2 x 2 sin 2 x cos 2 x d x = cos 2 4 x ( cos 4 x sin 4 x ) d x = sin 4 x cos 4 x d x Let, sin 4 x = t , d t = 4 cos 4 x d x = 1 4 t d t I = t 2 8 + C 1 = sin 2 4 x 8 + C 1 Manipulating the constant C 1 , we can rewrite I as, I = 2 sin 2 4 x 1 16 + C 2 Where, C 2 = C 1 + 1 16 = 1 16 cos 8 x + C 2 x = 1 , y = 16 x + y = 1 + 16 = 15 \begin{aligned}\text{ Let, }I&=\int \dfrac{1+\cos8x}{\cot2x-\tan2x} dx\\ &=\int \dfrac{2\cos^24x}{\dfrac{\cos2x}{\sin2x}-\dfrac{\sin2x}{\cos2x}}dx\\ &=\int \dfrac{\cos^24x}{\dfrac{\cos^22x-\sin^22x}{2\cdot\sin2x\cdot\cos2x}}dx\\ &=\int \dfrac{\cos^24x}{\left(\dfrac{\cos4x}{\sin4x}\right)}dx\\ &=\int\sin4x\cdot\cos4x\hspace{2mm} dx \hspace{10mm}\color{#3D99F6}\text{Let,}\sin4x=t ,dt=4\cos4x\hspace{2mm} dx\\ &=\dfrac{1}{4}\int tdt\\ \implies I&=\dfrac{t^2}{8}+C_{1}=\dfrac{\sin^24x}{8}+C_{1}\\ \\ &\text{Manipulating the constant }C_{1},\text{we can rewrite I as,}\\ \\ I&=\dfrac{2\sin^24x-1}{16}+C_{2} \hspace{10mm} \color{#3D99F6}\text{Where,} C_{2}=C_{1}+\dfrac{1}{16}\\ &=\dfrac{-1}{16}\cos8x+C_{2}\\ \implies&\color{#D61F06}\boxed{x=-1},\boxed{y=16}\\ |x+y|&=|-1+16|=\color{#D61F06}\boxed{15}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...