Integrate it!

Calculus Level 5

x sin 3 x x 4 + 1 d x = π a e b c sin ( d e ) \int_{-\infty}^{\infty}\dfrac{x\sin 3x}{x^4+1}\text{d}x=\pi^{a}e^{-\frac{b}{\sqrt{c}}}\sin\left(\frac{d}{\sqrt{e}}\right)

If the above equation is true for positive integers a , b , c , d a,b,c,d and e e ,where c c and e e are square free numbers, find the value of a + b + c + d + e a+b+c+d+e .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We can consider x sin 3 x x 4 + 1 d x = ( x e 3 i x x 4 + 1 d x ) \displaystyle \int_{-\infty}^\infty \frac {x\sin 3x}{x^4+1}dx = \Im \left(\int_{-\infty}^\infty \frac {xe^{3ix}}{x^4+1}dx \right) and apply contour integration using a semicircle with radius R R \to \infty in the upper complex plane as the contour as follows:

z e 3 i z z 4 + 1 d z = x e 3 i x x 4 + 1 d x + arc z e 3 i z z 4 + 1 d z \oint \frac {ze^{3iz}}{z^4+1} dz = \int_{-\infty}^\infty \frac {xe^{3ix}}{x^4+1}dx + \int_{\text{arc}} \frac {ze^{3iz}}{z^4+1} dz

The imaginary part of first integral on the right hand side is twice the integral we are solving for. The last integral on the right and side approaches to 0 when R R \to \infty by Jordan's lemma. Then we have:

I = x e 3 i x x 4 + 1 d x = z e 3 i z z 4 + 1 d z = z e 3 i z ( z e π 4 i ) ( z e 3 π 4 i ) ( z + e π 4 i ) ( z + e 3 π 4 i ) d z Only 2 of the 4 poles are in the contour = 1 2 ( 1 z e π 4 i 1 z e 3 π 4 i ) z e 3 i z ( z + e π 4 i ) ( z + e 3 π 4 i ) d z By Cauchy integral formula = 2 π i z e 3 i z 2 ( z + e π 4 i ) ( z + e 3 π 4 i ) e 3 π 4 i e π 4 i = π 2 ( e 3 2 ( 1 i ) e 3 2 ( 1 + i ) ) = i π e 3 2 sin ( 3 2 ) \begin{aligned} I & = \int_{-\infty}^\infty \frac {xe^{3ix}}{x^4+1}dx = \oint \frac {ze^{3iz}}{z^4+1} dz \\ & = \oint \frac {ze^{3iz}}{\blue{(z-e^{\frac \pi 4i})(z-e^{\frac {3\pi} 4i})}(z+e^{\frac \pi 4i})(z+e^{\frac {3\pi} 4i})} dz & \small \blue{\text{Only 2 of the 4 poles are in the contour}} \\ & = \oint \blue{\frac 1{\sqrt 2}\left(\frac 1{z-e^{\frac \pi 4i}} - \frac 1{z-e^{\frac {3\pi} 4i}}\right)}\frac {ze^{3iz}}{(z+e^{\frac \pi 4i})(z+e^{\frac {3\pi} 4i})} dz & \small \blue{\text{By Cauchy integral formula}} \\ & = \frac {2\pi i ze^{3iz}}{\sqrt 2(z+e^{\frac \pi 4i})(z+e^{\frac {3\pi} 4i})} \bigg|_{e^{\frac {3\pi}4i}}^{e^{\frac \pi 4i}} \\ & = \frac \pi 2 \left(e^{-\frac 3{\sqrt 2}(1-i)} - e^{-\frac 3{\sqrt 2}(1+i)} \right) \\ & = i \pi e^{-\frac 3{\sqrt 2}} \sin \left(\frac 3{\sqrt 2} \right) \end{aligned}

Therefore, ( I ) = π e 3 2 sin ( 3 2 ) \Im(I) = \pi e^{-\frac 3{\sqrt 2}} \sin \left(\dfrac 3{\sqrt 2} \right) and a + b + c + d + e = 1 + 3 + 2 + 3 + 2 = 11 a+b+c+d+e = 1+3+2+3+2 = \boxed{11} .

Joël Ganesh
Jun 2, 2020

Define the contour C R \mathscr{C}_R given by the upper semicircle of radius R > 1 R > 1 oriented counterclockwise and consider the contour integral C R z e 3 i z z 4 + 1 d z = R R x e 3 i x x 4 + 1 d x + C R z e 3 i z z 4 + 1 d z , \oint_{\mathscr{C}_R} \frac{ze^{3iz}}{z^4+1}\mathrm{d}z = \int_{-R}^R \frac{xe^{3ix}}{x^4+1}\mathrm{d}x + \int_{\mathcal{C}_R} \frac{ze^{3iz}}{z^4+1}\mathrm{d}z, where C R \mathcal{C}_R is the upper half circle of radius R R . We will prove that lim R C R z e 3 i z z 4 + 1 d z = 0. \lim_{R\to\infty} \int_{\mathcal{C}_R} \frac{ze^{3iz}}{z^4+1}\mathrm{d}z = 0. Note that by the reverse triangle inequality, C R z e 3 i z z 4 + 1 d z π R max z C R z e 3 i z z 4 + 1 π R max z C R z e 3 i z z 4 1 = π R 2 R 4 1 max z C R e 3 i z R 0 , \left|\int_{\mathcal{C}_R} \frac{ze^{3iz}}{z^4+1}\mathrm{d}z \right| \leq \pi R \cdot \max\limits_{z \in \mathcal{C}_R} \left|\frac{ze^{3iz}}{z^4+1}\right| \leq \pi R \cdot \max\limits_{z \in \mathcal{C}_R} \frac{|z||e^{3iz}|}{|z|^4-1} = \frac{\pi R^2}{R^4-1} \cdot \max\limits_{z \in \mathcal{C}_R} |e^{3iz}| \xrightarrow{R\to\infty} 0, as e 3 i z |e^{3iz}| is bounded by 1 in the upper half plane. Therefore, by the Residue theorem, x e 3 i x x 4 + 1 d x = lim R C R z e 3 i z z 4 + 1 d z = 2 π i ( Res z = e π i / 4 z e 3 i z z 4 + 1 + Res z = e 3 π i / 4 z e 3 i z z 4 + 1 ) . \int_{-\infty}^\infty \frac{xe^{3ix}}{x^4+1}\mathrm{d}x = \lim_{R\to\infty} \oint_{\mathscr{C}_R} \frac{ze^{3iz}}{z^4+1}\mathrm{d}z = 2\pi i \left(\text{Res}_{z=e^{\pi i/4}} \frac{ze^{3iz}}{z^4+1} + \text{Res}_{z=e^{3\pi i/4}} \frac{ze^{3iz}}{z^4+1}\right). Since the poles are simple, for a residue at z = z 0 z=z_0 we have that Res z = z 0 z e 3 i z z 4 + 1 = lim z z 0 ( z z 0 ) z e 3 i z z 4 + 1 = z 0 e 3 i z 0 4 z 0 3 = e 3 i z 0 4 z 0 2 , \text{Res}_{z=z_0} \frac{ze^{3iz}}{z^4+1}= \lim_{z\to z_0} \frac{(z-z_0)ze^{3iz}}{z^4+1} = \frac{z_0e^{3iz_0}}{4z_0^3} = \frac{e^{3iz_0}}{4z_0^2}, by l'Hôpital's rule. By doing some algebraic stuff we find that x sin ( 3 x ) x 4 + 1 d x = I m ( x e 3 i x x 4 + 1 d x ) = π e 3 / 2 sin ( 3 / 2 ) . \int_{-\infty}^\infty \frac{x\sin(3x)}{x^4+1}\mathrm{d}x = \mathfrak{Im}\left(\int_{-\infty}^\infty \frac{xe^{3ix}}{x^4+1}\mathrm{d}x\right) = \boxed{\pi e^{-3/\sqrt{2}}\sin(3/\sqrt{2})}. Therefore a = 1 , b = 3 , c = 2 , d = 3 a = 1, b = 3, c = 2, d = 3 and e = 2 e = 2 and a + b + c + d + e = 11 a+b+c+d+e = 11 .

Is this in jee main range

Venkates Vv - 11 months, 1 week ago

Log in to reply

It doesn't look like it (I'm not familiar with the program). I think this course is typical for 2nd/3rd year bachelor students at university if they are interested in the topic.

Joël Ganesh - 11 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...