Integrate It Man!

Calculus Level 4

π 2 π 2 x 2 cos x 1 + e x d x = π n a b \large \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1+e^x} \, dx = \frac{\pi^n}{a}-b

The equation above holds true for integers a , b a,b and n n . Find a + b + n a+b+n .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 13, 2017

Relevant wiki: Integration Tricks

I = π 2 π 2 x 2 cos x 1 + e x d x Using the identity: a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 π 2 π 2 x 2 cos x 1 + e x + ( x ) 2 cos ( x ) 1 + e x d x = 1 2 π 2 π 2 x 2 cos x 1 + e x + e x x 2 cos x e x + 1 d x = 1 2 π 2 π 2 x 2 cos x d x By integration by parts = 1 2 x 2 sin x π 2 π 2 1 2 π 2 π 2 2 x sin x d x By integration by parts again = π 2 4 + x cos x π 2 π 2 π 2 π 2 cos x d x = π 2 4 sin x π 2 π 2 = π 2 4 2 \begin{aligned} I & = \int_{-\frac \pi 2}^\frac \pi 2 \frac {x^2\cos x}{1+e^x} dx & \small \color{#3D99F6} \text{Using the identity: } \int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_{-\frac \pi 2}^\frac \pi 2 \frac {x^2\cos x}{1+e^x} + \frac {(-x)^2\cos (-x)}{1+e^{-x}} dx \\ & = \frac 12 \int_{-\frac \pi 2}^\frac \pi 2 \frac {x^2\cos x}{1+e^x} + \frac {e^x x^2\cos x}{e^x+1} dx \\ & = \frac 12 \int_{-\frac \pi 2}^\frac \pi 2 x^2\cos x \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = \frac 12 x^2 \sin x \ \bigg|_{-\frac \pi 2}^\frac \pi 2 - \frac 12 \int_{-\frac \pi 2}^\frac \pi 2 2x \sin x \ dx & \small \color{#3D99F6} \text{By integration by parts again} \\ & = \frac {\pi^2}4 + x \cos x \ \bigg|_{-\frac \pi 2}^\frac \pi 2 - \int_{-\frac \pi 2}^\frac \pi 2 \cos x \ dx \\ & = \frac {\pi^2}4 - \sin x \ \bigg|_{-\frac \pi 2}^\frac \pi 2 \\ & = \frac {\pi^2}4 - 2 \end{aligned}

a + b + n = 4 + 2 + 2 = 8 \implies a+b+n = 4+2+2 = \boxed{8}

Nicely done sir! +1

@Md Zuhair i liked ur status dude . i recently gave Mains and realised the truthness in ur status

Prakhar Bindal - 4 years, 1 month ago

Log in to reply

Ya, Its not my quote by the way, I find it in quora, By the way, whats ur estimated score in Mains?

Md Zuhair - 4 years, 1 month ago

Log in to reply

q`Well u can see on My note JEE Main 2017

Prakhar Bindal - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...