Integrate it! Part- III

Calculus Level 5

0 π d x ( 2 cos x ) 2 \int_{0}^{π} \frac{dx}{(2 - \cos x )^{2}}

Evaluate the integral above.


The answer is 1.20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Avineil Jain
Apr 11, 2014

Consider the following integral- \textbf{Consider the following integral-}

I = 0 π d x a c o s x I = \int_{0}^{π}\frac{dx}{a-cosx}

It is pretty easy to evaluate I \textbf{It is pretty easy to evaluate I} c o s x = 1 t a n 2 x 2 1 + t a n 2 x 2 cosx = \frac{1-tan^{2}\frac{x}{2}}{1+ tan^{2}\frac{x}{2}}

Simplifying, \textbf{Simplifying,}

I = 0 π s e c 2 x 2 d x ( a 1 ) + ( a + 1 ) t a n 2 x 2 I = \int_{0}^{π}\frac{sec^{2}\frac{x}{2}dx}{(a-1) + (a+1)tan^{2}\frac{x}{2}}

So, take tan x/2 = t and obtain- \textbf{So, take tan x/2 = t and obtain-}

0 π d x a c o s x = π a 2 1 \int_{0}^{π}\frac{dx}{a-cosx}= \frac{π}{\sqrt{a^{2} - 1}}

Differentiating both sides with respect to "a", \textbf{Differentiating both sides with respect to "a",}

0 π d x ( a c o s x ) 2 = π a ( a 2 1 ) 3 / 2 \int_{0}^{π}\frac{dx}{(a-cosx)^{2}} = \frac{πa}{(a^{2}-1)^{3/2}}

Substitute a=2, \textbf{Substitute a=2,}

0 π d x ( 2 c o s x ) 2 = 2 π 3 3 \int_{0}^{π}\frac{dx}{(2-cosx)^{2}} = \frac{2π}{3\sqrt{3}}

but when i calculate this integral in calculator it comes out to be 3.1385........is it wrong....?

Manit Mukhopadhyay - 7 years, 1 month ago

Log in to reply

you have your calculator set to degrees and not radians

Luis Valdivia - 4 years, 6 months ago

Actually a great solution!

Carlos David Nexans - 6 years, 10 months ago

You should add a backslash before all functions including cos and tan in LaTex. See the difference \cos x " cos x \cos x ". The function name cos is not in italic which is for constants and variables and there is a space between cos and x. Now cos x " c o s x cos x ", all are in italic and there is no space between cos and x. You don't need to enter text in LaTex. It is Brilliant.org's standard.

Chew-Seong Cheong - 3 years, 1 month ago

Nice solution. We can also solve it by integration by parts: 0 π d d x ( 1 2 cos x ) × 1 sin x d x \int_0^\pi \frac d{dx}\left(\frac{-1}{2-\cos x}\right)\times \frac 1{\sin x}dx

Sravanth C. - 3 years ago
Hassan Abdulla
Apr 30, 2018

I = 0 π d x ( 2 cos x ) 2 l e t t = tan ( x 2 ) I=\int _{ 0 }^{ π } \frac { dx }{ (2-\cos x)^{ 2 } } \\ \\ let\quad t=\tan { \left( \frac { x }{ 2 } \right) } weierstrass substitution

cos x = 1 t 2 1 + t 2 d x = 2 d t 1 + t 2 I = 0 2 d t ( 2 1 t 2 1 + t 2 ) 2 2 d t 1 + t 2 = 2 0 1 + t 2 ( 2 1 t 2 1 + t 2 ) 2 ( 1 + t 2 ) 2 d t I = 2 0 1 + t 2 ( 2 + t 2 1 + t 2 ) 2 d t = 2 0 1 + t 2 ( 1 + 3 t 2 ) 2 d t l e t t = tan ( x ) 3 d t = sec 2 ( x ) 3 d x I = 2 0 π 2 ( 1 + tan 2 ( x ) 3 ) ( 1 + tan 2 ( x ) ) 2 sec 2 ( x ) 3 d x = 2 3 3 0 π 2 ( 3 + tan 2 ( x ) ) sec 2 ( x ) d x I = 2 3 3 0 π 2 ( 3 cos 2 ( x ) + sin 2 ( x ) ) d x = 2 3 3 0 π 2 ( 2 cos 2 ( x ) + 1 ) d x I = 2 3 3 0 π 2 ( 2 + cos ( 2 x ) ) d x = 2 3 3 ( 2 x + sin ( 2 x ) 2 0 π 2 ) = 2 π 3 3 \cos x=\frac { 1-t^{ 2 } }{ 1+t^{ 2 } } \\ dx=\frac { 2dt }{ 1+t^{ 2 } } \\ I=\int _{ 0 }^{ \infty } \frac { 2dt }{ \left( 2-\frac { 1-t^{ 2 } }{ 1+t^{ 2 } } \right) ^{ 2 } } \cdot \frac { 2dt }{ 1+t^{ 2 } } =2\int _{ 0 }^{ \infty } \frac { 1+t^{ 2 } }{ \left( 2-\frac { 1-t^{ 2 } }{ 1+t^{ 2 } } \right) ^{ 2 }\left( 1+t^{ 2 } \right) ^{ 2 } } dt\\ I=2\int _{ 0 }^{ \infty } \frac { 1+t^{ 2 } }{ \left( 2+t^{ 2 }-1+t^{ 2 } \right) ^{ 2 } } dt=2\int _{ 0 }^{ \infty } \frac { 1+t^{ 2 } }{ \left( 1+3t^{ 2 } \right) ^{ 2 } } dt\\ let\quad t=\frac { \tan { \left( x \right) } }{ \sqrt { 3 } } \Rightarrow dt=\frac { \sec ^{ 2 }{ \left( x \right) } }{ \sqrt { 3 } } dx\\ I=2\int _{ 0 }^{ \frac { π }{ 2 } }{ \frac { \left( 1+\frac { \tan ^{ 2 }{ \left( x \right) } }{ 3 } \right) }{ \left( 1+\tan ^{ 2 }{ \left( x \right) } \right) ^{ 2 } } } \cdot \frac { \sec ^{ 2 }{ \left( x \right) } }{ \sqrt { 3 } } dx=\frac { 2 }{ 3\sqrt { 3 } } \int _{ 0 }^{ \frac { π }{ 2 } }{ \frac { \left( 3+\tan ^{ 2 }{ \left( x \right) } \right) }{ \sec ^{ 2 }{ \left( x \right) } } dx } \\ I=\frac { 2 }{ 3\sqrt { 3 } } \int _{ 0 }^{ \frac { π }{ 2 } }{ \left( 3\cos ^{ 2 }{ \left( x \right) } +\sin ^{ 2 }{ \left( x \right) } \right) dx } =\frac { 2 }{ 3\sqrt { 3 } } \int _{ 0 }^{ \frac { π }{ 2 } }{ \left( 2\cos ^{ 2 }{ \left( x \right) } +1 \right) dx } \\ I=\frac { 2 }{ 3\sqrt { 3 } } \int _{ 0 }^{ \frac { π }{ 2 } }{ \left( 2+\cos { \left( 2x \right) } \right) dx } =\frac { 2 }{ 3\sqrt { 3 } } \left( 2x+\frac { \sin { \left( 2x \right) } }{ 2 } |_{ 0 }^{ \frac { π }{ 2 } } \right) =\frac { 2\pi }{ 3\sqrt { 3 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...