∫ 0 2 π sin x lo g e ( sin x ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I will suggest a little shorter method. take cos x =t and then try to integrate. It will be much easier.
I = ∫ 0 2 π sin x ln ( sin x ) d x = − cos x ln ( sin x ) ∣ ∣ ∣ ∣ 0 2 π + ∫ 0 2 π sin x cos 2 x d x = − cos x ln ( sin x ) ∣ ∣ ∣ ∣ 0 2 π + ∫ 0 2 π sin x 1 − sin 2 x d x = − cos x ln ( sin x ) ∣ ∣ ∣ ∣ 0 2 π + ∫ 0 2 π csc x d x − ∫ 0 2 π sin x d x = − cos x ln ( sin x ) − ln ( cot x + csc x ) + cos x ∣ ∣ ∣ ∣ 0 2 π = − cos x ln ( sin x ) − ln ( 2 t 1 + t 2 + 2 t 1 − t 2 ) + cos x ∣ ∣ ∣ ∣ 0 2 π = − cos x ln ( sin x ) − ln ( t 1 ) + cos x ∣ ∣ ∣ ∣ 0 2 π = − cos x ln ( sin x ) + ln ( sin 2 x ) − ln ( cos 2 x ) + cos x ∣ ∣ ∣ ∣ 0 2 π = 0 + x → 0 lim ( cos x ln ( sin x ) − ln ( sin 2 x ) + ln ( cos 2 x ) − cos x ) = x → 0 lim ln ( sin 2 x sin x ) + 0 − 1 = x → 0 lim ln ( sin 2 x 2 sin 2 x cos 2 x ) − 1 = ln 2 − 1 ≈ − 0 . 3 0 7 Using integration by parts. Let t = tan 2 x ⟹ sin x = 1 + t 2 2 t ⟹ cos x = 1 + t 2 1 − t 2
Problem Loading...
Note Loading...
Set Loading...
We can take the indefinite integral using integration by parts.
I = ∫ ln ( sin x ) sin x d x
= − ln ( sin x ) cos x + ∫ cos x cot x d x
Now, the integral on the right side of this equation is
→ ∫ sin x cos 2 x d x = ∫ sin x 1 − sin 2 x d x = ∫ csc x − sin x d x = − ln ( csc x + cot x ) + cos x
(disregarding the absolute value bars, since x ≥ 0 .)
So our original indefinite integral is
I = − ln ( sin x ) cos x − ln ( csc x + cot x ) + cos x
which after some rearranging and using a trigonometric identity we can write as
I = ( cos x ) ( 1 − ln ( sin x ) ) + ln ( tan 2 x ) .
Now we evaluate this at the limits of integration.
I ( 2 π ) = 0 , but we must take a limit (and use L'Hôpital's rule and logarithmic differentiation) to find I ( 0 ) .
x → 0 lim [ cos x − ( cos x ) ln ( sin x ) + ln ( tan 2 x ) ]
= 1 + x → 0 lim ln ( ( sin x ) cos x tan 2 x )
= 1 + ln ( x → 0 lim ( sin x ) cos x [ ( cos x ) ( cot x ) − ( sin x ) ln ( sin x ) ] 2 1 sec 2 2 x ) = 1 + ln ( x → 0 lim ( cos 2 x ) ( sin x ) cos x − 1 − ln ( sin x ) ( sin x ) cos x + 1 2 1 sec 2 2 x )
= 1 + ln ( 2 1 )
Finally, the definite integral in question is
I ( 2 π ) − I ( 0 ) = 0 − ( 1 + ln ( 2 1 ) ) = ln ( 2 ) − 1 ≈ − 0 . 3 0 6 9