Integrate it! Part- IV

Calculus Level 4

0 π 2 sin x log e ( sin x ) d x = ? \large \int_{0}^{\frac{π}{2}} \sin x \log_{e}(\sin x)\ dx =\ ?


The answer is -0.306.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Indronil Ghosh
Apr 14, 2014

We can take the indefinite integral using integration by parts.

I = ln ( sin x ) sin x d x I=\displaystyle\int \ln (\sin x) \sin x \, \mathrm{d}x

= ln ( sin x ) cos x + cos x cot x d x =\displaystyle-\ln(\sin x)\cos x + \displaystyle\int\cos x \cot x \, \mathrm{d}x

Now, the integral on the right side of this equation is

cos 2 x sin x d x = 1 sin 2 x sin x d x = csc x sin x d x = ln ( csc x + cot x ) + cos x \to \displaystyle\int \dfrac{\cos^2 x}{\sin x} \, \mathrm{d}x= \displaystyle\int \dfrac{1-\sin^2 x}{\sin x}\, \mathrm{d}x=\displaystyle\int \csc x - \sin x \, \mathrm{d}x=-\ln(\csc x + \cot x) + \cos x

(disregarding the absolute value bars, since x 0 x\geq 0\, .)

So our original indefinite integral is

I = ln ( sin x ) cos x ln ( csc x + cot x ) + cos x I= \displaystyle-\ln(\sin x)\cos x -\ln(\csc x + \cot x) + \cos x

which after some rearranging and using a trigonometric identity we can write as

I = ( cos x ) ( 1 ln ( sin x ) ) + ln ( tan x 2 ) \displaystyle I=(\cos x)(1-\ln(\sin x)) + \ln\left(\tan \frac{x}{2}\right) .

Now we evaluate this at the limits of integration.

I ( π 2 ) = 0 \displaystyle I\left(\frac{\pi}{2}\right)=0 , but we must take a limit (and use L'Hôpital's rule and logarithmic differentiation) to find I ( 0 ) \displaystyle I\left(0\right) .

lim x 0 [ cos x ( cos x ) ln ( sin x ) + ln ( tan x 2 ) ] \displaystyle\lim_{x\to 0} \,\, \left[ \cos x - (\cos x)\ln(\sin x) + \ln\left(\tan \frac{x}{2}\right)\right]

= 1 + lim x 0 ln ( tan x 2 ( sin x ) cos x ) \displaystyle= 1 + \displaystyle\lim_{x\to 0} \,\, \ln\left( \frac{\tan \frac{x}{2}}{(\sin x)^{\cos x} } \right)

= 1 + ln ( lim x 0 1 2 sec 2 x 2 ( sin x ) cos x [ ( cos x ) ( cot x ) ( sin x ) ln ( sin x ) ] ) \displaystyle= 1 + \ln \left( \displaystyle\lim_{x\to 0} \,\, \frac{\frac{1}{2}\sec^2 \frac{x}{2}}{(\sin x)^{\cos x} \left[(\cos x) (\cot x) - (\sin x) \ln(\sin x)\right] } \right) = 1 + ln ( lim x 0 1 2 sec 2 x 2 ( cos 2 x ) ( sin x ) cos x 1 ln ( sin x ) ( sin x ) cos x + 1 ) \displaystyle = 1 + \ln \left( \displaystyle\lim_{x\to 0} \,\, \frac{ \frac{1}{2} \sec^2 \frac{x}{2}} {(\cos^2 x)(\sin x)^{\cos x \,-\,1}-\ln(\sin x)(\sin x)^{\cos x \,+\,1} } \right)

= 1 + ln ( 1 2 ) \displaystyle = 1+\ln\left(\frac{1}{2}\right)

Finally, the definite integral in question is

I ( π 2 ) I ( 0 ) = 0 ( 1 + ln ( 1 2 ) ) = ln ( 2 ) 1 0.3069 \displaystyle I\left(\frac{\pi}{2}\right)-I\left(0\right)=\displaystyle 0-\left(1+\ln\left(\frac{1}{2}\right)\right)=\displaystyle \ln (2) -1\approx \boxed{-0.3069}

I will suggest a little shorter method. take cos x =t and then try to integrate. It will be much easier.

Avineil Jain - 7 years, 1 month ago

Log in to reply

Will you please Elaborate

Vaibhav Agrawal - 7 years, 1 month ago
Chew-Seong Cheong
Aug 26, 2018

I = 0 π 2 sin x ln ( sin x ) d x Using integration by parts. = cos x ln ( sin x ) 0 π 2 + 0 π 2 cos 2 x sin x d x = cos x ln ( sin x ) 0 π 2 + 0 π 2 1 sin 2 x sin x d x = cos x ln ( sin x ) 0 π 2 + 0 π 2 csc x d x 0 π 2 sin x d x = cos x ln ( sin x ) ln ( cot x + csc x ) + cos x 0 π 2 Let t = tan x 2 sin x = 2 t 1 + t 2 = cos x ln ( sin x ) ln ( 1 + t 2 2 t + 1 t 2 2 t ) + cos x 0 π 2 cos x = 1 t 2 1 + t 2 = cos x ln ( sin x ) ln ( 1 t ) + cos x 0 π 2 = cos x ln ( sin x ) + ln ( sin x 2 ) ln ( cos x 2 ) + cos x 0 π 2 = 0 + lim x 0 ( cos x ln ( sin x ) ln ( sin x 2 ) + ln ( cos x 2 ) cos x ) = lim x 0 ln ( sin x sin x 2 ) + 0 1 = lim x 0 ln ( 2 sin x 2 cos x 2 sin x 2 ) 1 = ln 2 1 0.307 \begin{aligned} I & = \int_0^\frac \pi 2 \sin x \ln (\sin x) \ dx & \small \color{#3D99F6} \text{Using integration by parts.} \\ & = - \cos x \ln (\sin x) \ \bigg|_0^\frac \pi 2 + \int_0^\frac \pi 2 \frac {\cos^2 x}{\sin x} dx \\ & = - \cos x \ln (\sin x) \ \bigg|_0^\frac \pi 2 + \int_0^\frac \pi 2 \frac {1-\sin^2 x}{\sin x} dx \\ & = - \cos x \ln (\sin x) \ \bigg|_0^\frac \pi 2 + \int_0^\frac \pi 2 \csc x\ dx - \int_0^\frac \pi 2 \sin x \ dx \\ & = - \cos x \ln (\sin x) - \ln({\color{#3D99F6}\cot x + \csc x}) + \cos x \ \bigg|_0^\frac \pi 2 & \small \color{#3D99F6} \text{Let }t = \tan \frac x2 \implies \sin x = \frac {2t}{1+t^2} \\ & = - \cos x \ln (\sin x) - \ln \left({\color{#3D99F6}\frac {1+t^2}{2t} + \frac {1-t^2}{2t}}\right) + \cos x \ \bigg|_0^\frac \pi 2 & \small \color{#3D99F6} \implies \cos x = \frac {1-t^2}{1+t^2} \\ & = - \cos x \ln (\sin x) - \ln \left(\frac 1t \right) + \cos x \ \bigg|_0^\frac \pi 2 \\ & = - \cos x \ln (\sin x) + \ln \left(\sin \frac x2\right) - \ln \left(\cos \frac x2\right)+ \cos x \ \bigg|_0^\frac \pi 2 \\ & = 0 + \lim_{x \to 0} \left(\cos x \ln (\sin x) - \ln \left(\sin \frac x2\right) + \ln \left(\cos \frac x2\right) - \cos x\right) \\ & = \lim_{x \to 0} \ln \left(\frac {\sin x}{\sin \frac x2}\right) + 0 - 1 \\ & = \lim_{x \to 0} \ln \left(\frac {2\sin \frac x2 \cos \frac x2}{\sin \frac x2}\right) - 1 \\ & = \ln 2 - 1 \approx \boxed{-0.307} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...