Integrate It!- Part V

Calculus Level 4

S = 0 1 x 4 ( 1 x ) 4 1 + x 2 d x \large S = \displaystyle \int_{0}^{1} \dfrac{x^{4}(1-x)^{4}}{1 + x^{2}} \, dx

Find the value of 10000 S \large \lfloor 10000S \rfloor .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The given integral is one of the proofs that 22 7 > π \large\frac{22}{7}>\pi : S = 0 1 x 4 ( 1 x ) 4 1 + x 2 d x > 0 0 1 x 4 4 x 5 + 6 x 6 4 x 7 + x 8 1 + x 2 d x > 0 0 1 [ x 6 4 x 5 + 5 x 4 4 x 2 + 4 4 1 + x 2 ] d x > 0 [ x 7 7 2 x 6 3 + x 5 4 x 3 3 + 4 x 4 arctan x ] 0 1 > 0 1 7 2 3 + 1 4 3 + 4 π > 0 S = 22 7 π > 0 22 7 > π \begin{aligned} S=\int_0^1\frac{x^4(1-x)^4}{1+x^2}\, dx&>0\\ \int_0^1\frac{x^4-4x^5+6x^6-4x^7+x^8}{1+x^2}\, dx&>0\\ \int_0^1\left[x^6-4x^5+5x^4-4x^2+4-\frac{4}{1+x^2}\right]\, dx&>0\\ \left[\frac{x^7}{7}-\frac{2x^6}{3}+x^5-\frac{4x^3}{3}+4x-4\arctan x\right]_0^1&>0\\ \frac{1}{7}-\frac{2}{3}+1-\frac{4}{3}+4-\pi&>0\\ S=\frac{22}{7}-\pi&>0\\ \frac{22}{7}&>\pi \end{aligned} So [ 10000 ( 22 7 π ) ] = 12 \left[10000\left(\frac{22}{7}-\pi\right)\right]=12

Source : The first problem in the 1968 Putnam Competition

S = 0 1 x 4 1 + x 2 ( 1 x ) 4 d x = 0 1 x 4 1 + x 2 ( 1 2 x + x 2 ) 2 d x = 0 1 x 4 1 + x 2 ( ( 1 + x 2 ) 2 4 x ( 1 + x 2 ) + 4 x 2 ) 1 d x = 0 1 ( x 6 4 x 5 + x 4 + 4 x 6 1 + x 2 ) d x = 0 1 ( x 6 4 x 5 + x 4 + 4 ( x 4 x 2 + 1 1 1 + x 2 ) d x S o l v i n g t h i s t h i s w e g e t S = 22 7 π w h i c h i s n o t e q u a l t o z e r o a s e x a c t v a l u e o f π 22 7 S=\int _{ 0 }^{ 1 }{ \frac { { x }^{ 4 } }{ 1+{ x }^{ 2 } } { (1-x) }^{ 4 } } dx\\ =\int _{ 0 }^{ 1 }{ \frac { { x }^{ 4 } }{ 1+{ x }^{ 2 } } { (1-2x+{ x }^{ 2 }) }^{ 2 } } dx\\ =\int _{ 0 }^{ 1 }{ \frac { { x }^{ 4 } }{ 1+{ x }^{ 2 } } { ({ (1+{ x }^{ 2 }) }^{ 2 }-4x(1+{ x }^{ 2 })+4{ x }^{ 2 }) }^{ 1 } } dx\\ =\int _{ 0 }^{ 1 }{ ({ x }^{ 6 } } -4{ x }^{ 5 }+{ x }^{ 4 }+4\frac { { x }^{ 6 } }{ 1+{ x }^{ 2 } } )dx\\ =\int _{ 0 }^{ 1 }{ ({ x }^{ 6 } } -4{ x }^{ 5 }+{ x }^{ 4 }+4({ x }^{ 4 }-{ x }^{ 2 }+1-\frac { 1 }{ 1+{ x }^{ 2 } } )dx\\ Solving\quad this\quad this\quad we\quad get\quad S=\frac { 22 }{ 7 } -\pi \quad which\quad is\quad not\quad equal\quad to\quad zero\quad as\quad exact\quad value\quad of\quad \pi \neq \frac { 22 }{ 7 } S = 0.001264 [ 10000 S ] = 12 \\ S=0.001264\quad [10000S]=12\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...