Integrate It Please

Calculus Level 5

1 1 sin 1 ( x ) cos 1 ( x ) tan 1 ( x ) d x = 1 8 π 2 ( 2 log ( a b 2 ) 4 2 + π + 4 ) \int_{-1}^1 \sin ^{-1}(x) \cos ^{-1}(x) \tan ^{-1}(x) \, dx=\frac{1}{8} \pi ^2 \left(-2 \log \left(a-b \sqrt{2}\right)-4 \sqrt{2}+\pi +4\right)

where a , b a,b are positive integers. Submit a + b a+b .


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 16, 2017

We need the result of this other question. Note that the substitution y = x y = -x gives 1 1 sin 1 x cos 1 x tan 1 x d x = 1 1 sin 1 y ( π cos 1 y ) tan 1 y d y \int_{-1}^1 \sin^{-1}x \cos^{-1}x \tan^{-1}x\,dx \; = \; \int_{-1}^1 \sin^{-1}y (\pi - \cos^{-1}y)\tan^{-1}y\,dy so that 1 1 sin 1 x cos 1 x tan 1 x d x = 1 2 π 1 1 sin 1 x tan 1 x d x \int_{-1}^1 \sin^{-1}x \cos^{-1}x \tan^{-1}x\,dx \; = \; \tfrac12\pi \int_{-1}^1 \sin^{-1}x \tan^{-1}x\,dx Manipulating the answer to the previous question, we see that the answer is 1 8 π 2 ( 2 ln ( 24 16 2 ) 4 2 + π + 4 ) \tfrac18\pi^2\Big(-2\ln(24 - 16\sqrt{2}) - 4\sqrt{2} + \pi + 4\Big) making the answer 24 + 16 = 40 24+16 = \boxed{40} .

By substituting x \displaystyle x to x -x we find that

1 1 arcsin x arccos x arctan x d x = π 2 1 1 arcsin x arctan x d x \displaystyle \int _{ -1 }^{ 1 }{ \arcsin { x } \arccos { x } \arctan { x } } dx=\frac { \pi }{ 2 } \int _{ -1 }^{ 1 }{ \arcsin { x } \arctan { x } } dx

Now,

1 1 arcsin x arctan x d x = π 2 4 1 1 ( x arctan x 1 x 2 + x arcsin x 1 + x 2 ) d x \displaystyle \int _{ -1 }^{ 1 }{ \arcsin { x } \arctan { x } } dx=\frac { { \pi }^{ 2 } }{ 4 } -\int _{ -1 }^{ 1 }{ \left( \frac { x\arctan { x } }{ \sqrt { 1-{ x }^{ 2 } } } +\frac { x\arcsin { x } }{ 1+{ x }^{ 2 } } \right) dx }

1 1 ( x arctan x 1 x 2 + x arcsin x 1 + x 2 ) d x = π ln 2 2 1 1 ( ln 1 + x 2 2 1 x 2 1 x 2 1 + x 2 ) d x \displaystyle \int _{ -1 }^{ 1 }{ \left( \frac { x\arctan { x } }{ \sqrt { 1-{ x }^{ 2 } } } +\frac { x\arcsin { x } }{ 1+{ x }^{ 2 } } \right) dx } =\frac { \pi \ln { 2 } }{ 2 } -\int _{ -1 }^{ 1 }{ \left( \frac { \ln { 1+{ x }^{ 2 } } }{ 2\sqrt { 1-{ x }^{ 2 } } } -\frac { \sqrt { 1-{ x }^{ 2 } } }{ 1+{ x }^{ 2 } } \right) dx }

Now comes the real beauty :D. Let

J ( a ) = 1 1 ( ln 1 + a 2 x 2 1 x 2 ) d x \displaystyle J(a)=\int _{ -1 }^{ 1 }{ \left( \frac { \ln { 1+{ { a }^{ 2 }x }^{ 2 } } }{ \sqrt { 1-{ x }^{ 2 } } } \right) dx }

Then

J ( a ) = 1 1 ( 2 a x 2 ( 1 + a 2 x 2 ) 1 x 2 ) d x = 2 a 1 + a 2 ( 1 1 ( 1 x 2 ( 1 + a 2 x 2 ) + 1 1 x 2 ) d x ) = 2 a π 1 + a 2 2 a 1 + a 2 1 1 ( 1 x 2 ( 1 + a 2 x 2 ) ) d x \displaystyle J'(a)=\int _{ -1 }^{ 1 }{ \left( \frac { 2a{ x }^{ 2 } }{ (1+{ a }^{ 2 }{ x }^{ 2 })\sqrt { 1-{ x }^{ 2 } } } \right) dx } =\frac { 2a }{ 1+{ a }^{ 2 } } \left( \int _{ -1 }^{ 1 }{ \left( -\frac { \sqrt { 1-{ x }^{ 2 } } }{ (1+{ a }^{ 2 }{ x }^{ 2 }) } +\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } \right) dx } \right) =\frac { 2a\pi }{ 1+{ a }^{ 2 } } -\frac { 2a }{ 1+{ a }^{ 2 } } \int _{ -1 }^{ 1 }{ \left( \frac { \sqrt { 1-{ x }^{ 2 } } }{ (1+{ a }^{ 2 }{ x }^{ 2 }) } \right) dx }

Now let

K ( a ) = 1 1 ( 1 x 2 ( 1 + a 2 x 2 ) ) d x \displaystyle K(a)=\int _{ -1 }^{ 1 }{ \left( \frac { \sqrt { 1-{ x }^{ 2 } } }{ (1+{ a }^{ 2 }{ x }^{ 2 }) } \right) dx }

K ( a ) = 1 1 ( 1 x 2 ( 1 + a 2 x 2 ) ) d x = 1 a 1 1 ( x arctan ( a x ) 1 x 2 ) d x \displaystyle K(a)=\int _{ -1 }^{ 1 }{ \left( \frac { \sqrt { 1-{ x }^{ 2 } } }{ (1+{ a }^{ 2 }{ x }^{ 2 }) } \right) dx } =\frac { 1 }{ a } \int _{ -1 }^{ 1 }{ \left( \frac { x\arctan { (ax) } }{ \sqrt { 1-{ x }^{ 2 } } } \right) dx }

( a K ) ( a ) = 1 1 ( x 2 ( 1 + a 2 x 2 ) 1 x 2 ) d x = J 2 a \displaystyle (aK)'(a)=\int _{ -1 }^{ 1 }{ \left( \frac { { x }^{ 2 } }{ (1+{ a }^{ 2 }{ x }^{ 2 })\sqrt { 1-{ x }^{ 2 } } } \right) dx } =\frac { J' }{ 2a }

So, we have

( a K ) = J 2 a \displaystyle (aK)'=\frac { J' }{ 2a } and

J = 2 a π 1 + a 2 2 a K 1 + a 2 \displaystyle J'=\frac { 2a\pi }{ 1+{ a }^{ 2 } } -\frac { 2aK }{ 1+{ a }^{ 2 } }

So,

K + a K = π 1 + a 2 K 1 + a 2 \displaystyle K+aK'=\frac { \pi }{ 1+{ a }^{ 2 } } -\frac { K }{ 1+{ a }^{ 2 } }

K + K ( 2 a a 1 + a 2 ) = π a ( 1 + a 2 ) \displaystyle K'+K(\frac { 2 }{ a } -\frac { a }{ 1+{ a }^{ 2 } } )=\frac { \pi }{ a(1+{ a }^{ 2 }) }

So,

K = π ( 1 + a 2 + c ) a 2 \displaystyle K=\frac { \pi \left( \sqrt { 1+{ a }^{ 2 } } +c \right) }{ { a }^{ 2 } }

And we want

K ( 0 ) = 1 1 1 x 2 d x = π 2 = π ( 1 + a 2 + c ) a 2 \displaystyle K(0)=\int _{ -1 }^{ 1 }{ \sqrt { 1-{ x }^{ 2 } } dx } =\frac { \pi }{ 2 } =\frac { \pi \left( \sqrt { 1+{ a }^{ 2 } } +c \right) }{ { a }^{ 2 } }

So, c=-1

Now,

J 2 = π ( 1 a + a 1 + a 2 1 + a 2 a ) \displaystyle \frac { J' }{ 2 } =\pi \left( \frac { 1 }{ a } +\frac { a }{ \sqrt { 1+{ a }^{ 2 } } } -\frac { \sqrt { 1+{ a }^{ 2 } } }{ { a } } \right)

The hardest integral here should(?) be the last term and so, I will give a clue of how I have done it.

Hint:Let a = tan θ a=\tan{\theta}

J 2 = π ( ln ( 1 + 1 + a 2 ) + c ) \displaystyle \frac { J }{ 2 } =\pi \left( \ln { (1+\sqrt { 1+{ a }^{ 2 } } ) } +c \right)

And we want J ( 0 ) = 0 J(0)=0

So, J ( a ) = 2 π ( ln ( 1 + 1 + a 2 ) ln 2 ) \displaystyle J(a)=2\pi \left( \ln { (1+\sqrt { 1+{ a }^{ 2 } } ) } -\ln { 2 } \right)

Combining all these together and recall that the integrals we want is when a=1, we get

1 1 arcsin x arccos x arctan x d x = π 2 8 ( 2 ln ( 24 16 2 ) 4 2 + π + 4 ) \displaystyle \int _{ -1 }^{ 1 }{ \arcsin { x } \arccos { x } \arctan { x } } dx=\dfrac{\pi^{2}}{8} \left( -2\ln(24-16\sqrt{2})-4\sqrt{2}+\pi+4 \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...