Integrate sin-e-cos

Calculus Level 4

0 π / 2 e sin x cos 3 x d x \large \displaystyle \int_{0}^{\pi /2} e^{\sin x}\cos^3 x \ dx

Find the closed form of the integral above. Give your answer to 2 decimal places.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let sin x = y \sin x=y , then

0 π / 2 e sin x ( 1 cos 2 x ) d x = 0 1 e y ( 1 y 2 ) d y \int_{0}^{\pi/2} e^{\sin x}(1-\cos^2 x) dx = \int_{0}^{1} e^y (1-y^2) dy

e y ( 1 y 2 ) = e y ( y 2 1 ) = e y ( y 2 2 y + 1 + 2 ( y 1 ) ) = e y ( y 1 ) 2 2 e y ( y 1 ) e^y(1-y^2) = -e^y(y^2-1) = -e^y(y^2-2y+1+2(y-1)) = -e^y(y-1)^2 - 2e^y(y-1)

e y ( y 1 ) 2 2 e y ( y 1 ) = ( y 1 ) 2 d d y e y + e y d d y ( y 1 ) 2 = d d y e y ( 1 y 2 ) -e^y(y-1)^2 - 2e^y(y-1) = -(y-1)^2\frac{d}{dy} e^y+e^y\frac{d}{dy}(y-1)^2=\frac{d}{dy}e^y(1-y^2)

Hence,

0 1 e y ( 1 y 2 ) d y = e y ( 1 y 2 ) 0 1 = 1 \int_{0}^{1} e^y (1-y^2) dy = \left.e^y(1-y^2) \right|_{0}^{1}=\boxed{1}

Same way. Try solving this

Samara Simha Reddy - 5 years, 1 month ago

Substituting e s i n x = t e^{sinx} =t gives ( 1 ln 2 t ) d t \int (1-\ln^{2} t) dt which can be evaluated using IBP.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...