This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The integral can be solved using Feynman's integration trick differentiation under the integral sign as below:
I ( a ) ∂ a ∂ I ( a ) ⟹ I ( a ) I ( ∞ ) ⟹ I ( a ) ⟹ I ( 0 ) = ∫ 0 ∞ x e − a x sin x d x = ∫ ∞ 0 e − a x sin x d x = − e − a x cos x − ∫ a e a x cos x d x ∣ ∣ ∣ ∣ ∞ 0 = − e − a x cos x − a e − a x sin x − a 2 ∫ e − a x sin x d x ∣ ∣ ∣ ∣ ∞ 0 = − 1 + a 2 e − a x ( a sin x + cos x ) d x ∣ ∣ ∣ ∣ ∞ 0 = − 1 + a 2 1 = − tan − 1 a + C = − 2 π + C = 0 = 2 π − tan − 1 a = ∫ 0 ∞ x sin x d x = 2 π ≈ 1 . 5 7 By integration by parts where C is the constant of integration. ⟹ C = 2 π
Problem Loading...
Note Loading...
Set Loading...
Consider the integral:
F ( s ) = ∫ 0 ∞ e − s x sin x d x
This is a standard integral with a result of:
∫ 0 ∞ e − s x sin x d x = 1 + s 2 1
Now, integrating both sides from some constant p to ∞ with respect to s gives:
∫ p ∞ ∫ 0 ∞ e − s x sin x d x d s = ∫ p ∞ 1 + s 2 d s
Order of integration can be changed (in LHS) as limits of integration are constant:
∫ 0 ∞ ∫ p ∞ e − s x sin x d s d x = 2 π − arctan p ∫ 0 ∞ x e − p x sin x d x = 2 π − arctan p
Substituting p = 0 gives:
∫ 0 ∞ x sin x d x = 2 π