A calculus problem by Aly Ahmed

Calculus Level 3

0 sin x x d x = ? \int_0^\infty \dfrac{\sin x}x \, dx = \, ?


The answer is 1.5708.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Apr 2, 2020

Consider the integral:

F ( s ) = 0 e s x sin x d x F(s) = \int_{0}^{\infty} \mathrm{e}^{-sx}\sin{x} \ dx

This is a standard integral with a result of:

0 e s x sin x d x = 1 1 + s 2 \int_{0}^{\infty} \mathrm{e}^{-sx}\sin{x} \ dx = \frac{1}{1+s^2}

Now, integrating both sides from some constant p p to \infty with respect to s s gives:

p 0 e s x sin x d x d s = p d s 1 + s 2 \int_{p}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-sx}\sin{x} \ dx \ ds = \int_{p}^{\infty}\frac{ds}{1+s^2}

Order of integration can be changed (in LHS) as limits of integration are constant:

0 p e s x sin x d s d x = π 2 arctan p \int_{0}^{\infty} \int_{p}^{\infty} \mathrm{e}^{-sx}\sin{x} \ ds \ dx = \frac{\pi}{2}-\arctan{p} 0 e p x sin x x d x = π 2 arctan p \int_{0}^{\infty} \frac{\mathrm{e}^{-px}\sin{x}}{x} \ dx = \frac{\pi}{2}-\arctan{p}

Substituting p = 0 p=0 gives:

0 sin x x d x = π 2 \boxed{\int_{0}^{\infty} \frac{\sin{x}}{x} \ dx = \frac{\pi}{2}}

The integral can be solved using Feynman's integration trick differentiation under the integral sign as below:

I ( a ) = 0 e a x sin x x d x I ( a ) a = 0 e a x sin x d x By integration by parts = e a x cos x a e a x cos x d x 0 = e a x cos x a e a x sin x a 2 e a x sin x d x 0 = e a x ( a sin x + cos x ) 1 + a 2 d x 0 = 1 1 + a 2 I ( a ) = tan 1 a + C where C is the constant of integration. I ( ) = π 2 + C = 0 C = π 2 I ( a ) = π 2 tan 1 a I ( 0 ) = 0 sin x x d x = π 2 1.57 \begin{aligned} I(a) & = \int_0^\infty \frac {e^{-ax}\sin x}x dx \\ \frac {\partial I(a)}{\partial a} & = \int^0_\infty e^{-ax}\sin x\ dx & \small \blue{\text{By integration by parts}} \\ & = -e^{-ax}\cos x - \int a e^{ax} \cos x \ dx \bigg|^0_\infty \\ & = -e^{-ax}\cos x - a e^{-ax} \sin x - a^2 \int e^{-ax} \sin x \ dx \bigg|^0_\infty \\ & = - \frac {e^{-ax}(a\sin x +\cos x)}{1+a^2} \ dx \bigg|^0_\infty \\ & = - \frac 1{1+a^2} \\ \implies I(a) & = - \tan^{-1} a + \blue C & \small \blue{\text{where }C \text{ is the constant of integration.}} \\ I (\infty) & = - \frac \pi 2 + C = 0 & \small \blue{\implies C = \frac \pi 2} \\ \implies I(a) & = \frac \pi 2 - \tan^{-1} a \\ \implies I(0) & = \int_0^\infty \frac {\sin x}x dx = \frac \pi 2 \approx \boxed{1.57} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...