Integrate terms in AP

Calculus Level 5

If

0 1 x 2016 ( x 2016 + 1008 ) ( x 2016 + 2016 ) 1 / 2016 d x = a 1 / b c \displaystyle \int_0^1{x^{2016} (x^{2016} + 1008){\left(x^{2016} + 2016\right)}^{1/2016} \ dx} = \frac{a^{1/b}}{c}

where a , b , c a,b,c are positive integers, a a is not a multiple of perfect b b th power.

Then find b + c a b + c - a .

Bonus: Generalize x n ( x n + d ) ( x n + 2 d ) 1 / n d x \displaystyle \int {x^n (x^n + d) {(x^n + 2d)}^{1/n} \ dx} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kartik Sharma
Mar 5, 2017

Proposition

x n ( x n + d ) ( x n + 2 d ) 1 / n d x = 1 2 ( n + 1 ) x n + 1 ( x n + 2 d ) 1 / n \int {x^n (x^n + d) {(x^n + 2d)}^{1/n} \ dx} = \frac{1}{2(n+1)} x^{n+1}{(x^n + 2d)}^{1/n}

Proof

Put x n + d = t \color{#D61F06} x^n + d = t ,

= 1 n ( t d ) 1 / n t ( t + d ) 1 / n d t = \frac{1}{n} \int{ {(t-d)}^{1/n} t {(t+d)}^{1/n} \ dt}

= 1 n t ( t 2 d 2 ) 1 / n d t = \frac{1}{n} \int{ t {(t^2 - d^2)}^{1/n} \ dt}

Put t 2 d 2 = u n \color{#D61F06} t^2 - d^2 = u^n ,

= u n 2 d u = \int{\frac{u^n}{2}\ du}

= u n + 1 2 ( n + 1 ) = \frac{u^{n+1}}{2(n+1)}

= x n + 1 ( x n + 2 d ) 1 / n + 1 2 ( n + 1 ) = \frac{x^{n+1} {(x^n + 2d)}^{1/n + 1}}{2(n+1)}

Short and sweet. I love this problem. I took some time to think about the first substitution.

Kartik Sharma - 4 years, 3 months ago
Anirudh Sreekumar
Mar 16, 2017

Consider ,

x n ( x n + d ) ( x n + 2 d ) 1 n d x \begin{aligned} \large \int{x^n(x^n+d)(x^n+2d)^{\tfrac{1}{n}} dx}\end{aligned}

it can be rewritten as,

x n 1 ( x n + d ) ( x 2 n + 2 d x n ) 1 n d x \begin{aligned} \large \int{x^{n-1}(x^n+d)(x^{2n}+2dx^n)^{\tfrac{1}{n}} dx}\end{aligned}

now let , t = x 2 n + 2 d x n d t = 2 n x 2 n 1 + 2 n d x n 1 = 2 n × x n 1 ( x n + d ) \begin{aligned} \large t&=\large x^{2n}+2dx^n\\\large dt&=\large 2n x^{2n-1}+2ndx^{n-1}\\ &=\large 2n\times x^{n-1}(x^n+d) \end{aligned}

The given integral becomes,

1 2 n t 1 n d t = t 1 n + 1 2 n ( 1 n + 1 ) + C = ( x 2 n + 2 d x n ) 1 n + 1 2 ( n + 1 ) + C = x n + 1 × ( x n + 2 d ) 1 n + 1 2 ( n + 1 ) + C \begin{aligned} \large \frac{1}{2n}\int{t^{\tfrac{1}{n}}dt}&=\dfrac{t^{\tfrac{1}{n}+1}}{2n( \dfrac{1}{n}+1)}+C\\ &=\large \dfrac{(x^{2n}+2dx^n)^{\tfrac{1}{n}+1}}{2(n+1)}+C\\ &=\dfrac{x^{n+1}\times(x^{n}+2d)^{\tfrac{1}{n}+1}}{2(n+1)}+C\end{aligned}

0 p x n 1 ( x n + d ) ( x 2 n + 2 d x n ) 1 n d x = p n + 1 × ( p n + 2 d ) 1 n + 1 2 ( n + 1 ) \begin{aligned} \large \int_{0}^p{x^{n-1}(x^n+d)(x^{2n}+2dx^n)^{\tfrac{1}{n}} dx}=\dfrac{p^{n+1}\times(p^{n}+2d)^{\tfrac{1}{n}+1}}{2(n+1)}\end{aligned}

in the above problem n = 2016 , d = 1008 n=2016 ,d=1008 and p = 1 p=1 ,on simplifying we get

I = 1 × 2017 1 2016 + 1 4034 = 1 × 2017 1 2016 2 \begin{aligned} I&=\dfrac{1\times {2017}^{\tfrac{1}{2016}+1}}{4034}\\&=\dfrac{1\times {2017}^{\tfrac{1}{2016}}}{2}\end{aligned}

a = 2017 , b = 2016 , c = 2 \Rightarrow a=2017,b=2016,c=2

b + c a = 2016 + 2 2017 = 1 b+c-a=2016+2-2017=\boxed{1}

Mark Hennings
Mar 21, 2017

Since x n ( x n + d ) ( x n + 2 d ) 1 n = 1 2 [ x n ( x n + ( x n + 2 d ) ) ( x n + 2 d ) 1 n ] = 1 2 [ x 2 n ( x n + 2 d ) 1 n + x n ( x n + 2 d ) n + 1 n ] = 1 2 [ x n + 1 × x n 1 ( x n + 2 d ) 1 n + x n × ( x n + 2 d ) n + 1 n ] = 1 2 ( n + 1 ) d d x [ x n + 1 ( x n + 2 d ) n + 1 n ] \begin{aligned} x^n(x^n+d)(x^n + 2d)^{\frac1n} & = \tfrac12\Big[x^n\big(x^n + (x^n + 2d)\big)(x^n + 2d)^{\frac1n}\Big] \; = \; \tfrac12\Big[x^{2n}(x^n + 2d)^{\frac1n} +x^n(x^n + 2d)^{\frac{n+1}{n}} \Big] \\ &= \tfrac12\Big[x^{n+1} \times x^{n-1}(x^n + 2d)^{\frac1n} + x^n \times (x^n + 2d)^{\frac{n+1}{n}}\Big] \; = \; \frac1{2(n+1)}\frac{d}{dx}\Big[x^{n+1}(x^n + 2d)^{\frac{n+1}{n}}\Big] \end{aligned} we have 0 1 x n ( x n + d ) ( x n + 2 d ) 1 n d x = 1 2 ( n + 1 ) ( 2 d + 1 ) n + 1 n \int_0^1 x^n(x^n+d)(x^n + 2d)^{\frac1n} \,dx \; =\; \frac{1}{2(n+1)} (2d+1)^{\frac{n+1}{n}} Putting n = 2 d n=2d we obtain 1 2 ( 2 d + 1 ) 1 2 d \tfrac12(2d+1)^{\frac{1}{2d}} , making the answer 2 d + 2 ( 2 d + 1 ) = 1 2d + 2 - (2d+1) = \boxed{1} .

Yeah, that serves the title best. Neat!

Kartik Sharma - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...