Integrate the denominator

Calculus Level 3

1331 1728 d x x x 1 3 = a b ln ( c d ) \large \int_{1331}^{1728}{\dfrac{dx}{x-x^{\frac{1}{3}}}}=\dfrac{a}{b}\ln\left(\dfrac{c}{d}\right)

Positive coprime integers a a and b b , and c c and d d satisfy the above equation. Find the value of c d a b \dfrac{cd}{ab} .


The answer is 2860.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

N. Aadhaar Murty
Oct 17, 2020

Substitute x 1 3 = u d x = 3 x 2 3 d u = 3 u 2 d u . x^{\frac {1}{3}} = u \Rightarrow dx = 3x^{\frac {2}{3}}du = 3u^{2}du. The integral becomes -

I = 3 11 12 u 2 d u u 3 u = 3 11 12 u d u u 2 1 I = 3\int_{11}^{12} \frac {u^{2}du}{u^{3} - u} = 3\int_{11}^{12} \frac {u du}{u^{2} - 1}

Let u 2 1 = a d u = d a 2 u u^{2} - 1 = a \Rightarrow du = \frac {da}{2u} .

I = 3 2 120 143 d a a = 3 2 ln ( a ) 120 143 = 3 2 ln ( 143 120 ) \therefore I = \frac {3}{2}\int_{120}^{143} \frac {da}{a} = \frac {3}{2}\ln(a) \Big|_{120}^{143} = \boxed {\frac {3}{2}\ln\left(\frac {143}{120}\right)}

Hence c d a b = 2860. \frac {cd}{ab} = 2860.

Chew-Seong Cheong
Dec 11, 2017

I = 1331 1728 d x x x 3 Let u 3 = x 3 u 2 d u = d x = 11 12 3 u 2 u 3 u d u = 11 12 3 u u 2 1 d u = 11 12 3 u ( u 1 ) ( u + 1 ) d u By partial fraction decomposition = 3 2 11 12 ( 1 u 1 + 1 u + 1 ) d u = 3 2 [ ln ( u 1 ) + ln ( u + 1 ) ] 11 12 = 3 2 ( ln 11 10 + ln 13 12 ) = 3 2 ln 143 120 \begin{aligned} I & = \int_{1331}^{1728} \frac {dx}{x-\sqrt[3] x} & \small \color{#3D99F6} \text{Let }u^3 = x \implies 3u^2 du = dx \\ & = \int_{11}^{12} \frac {3u^2}{u^3-u} du \\ & = \int_{11}^{12} \frac {3u}{u^2-1} du \\ & = \int_{11}^{12} \frac {3u}{(u-1)(u+1)} du & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \frac 32 \int_{11}^{12} \left(\frac 1{u-1}+\frac 1{u+1}\right) du \\ & = \frac 32 \bigg[\ln(u-1) + \ln(u+1)\bigg]_{11}^{12} \\ & = \frac 32 \left(\ln \frac {11}{10} + \ln \frac {13}{12} \right) \\ & = \frac 32 \ln \frac {143}{120} \end{aligned}

c d a b = 143 × 120 3 × 2 = 2860 \implies \dfrac {cd}{ab} = \dfrac {143 \times 120}{3 \times 2} = \boxed{2860}

Sir, in 3rd line there have to be an u u , isn't it?

Md Mehedi Hasan - 3 years, 6 months ago

Log in to reply

Thanks. I have added it.

Chew-Seong Cheong - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...