Integrate the ln

Calculus Level 1

Evaluate the following:-
0 1 ln ( x ) d x \large \int_{0}^{1} \ln(x) \ dx


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Integration by Parts - Easy

I = 0 1 ln x d x By integration by parts: u = ln x , v = 1 = x ln x 0 1 0 1 x x d x = 0 0 x 0 1 Note that: lim x 0 + x ln x = 0 , see Note. = ( 1 0 ) = 1 \begin{aligned} I & = \int_0^1 \ln x \ dx & \small \color{#3D99F6}{\text{By integration by parts: }u = \ln x, \ v' = 1} \\ & = x \ln x \ \bigg|_0^1 - \int_0^1 \frac xx \ dx \\ & = 0 - \color{#3D99F6}{0} - x \ \bigg|_0^1 & \color{#3D99F6}{\text{Note that: }\lim_{x \to 0^+} x\ln x = 0 \text{, see Note.}} \\ & = - (1-0) \\ & = \boxed{-1} \end{aligned}


Note: \color{#3D99F6}{\text{Note:}}

L = lim x 0 + x ln x Divide up and down by x = lim x 0 + ln x 1 x It is a / case, L’H o ˆ pital’s rule applies. = lim x 0 + 1 x 1 x 2 Differentiate up and down w.r.t. x . = lim x 0 + x = 0 \begin{aligned} L & = \lim_{x \to 0^+} x\ln x & \small \color{#3D99F6}{\text{Divide up and down by }x} \\ & = \lim_{x \to 0^+} \frac {\ln x}{\frac 1x} & \small \color{#3D99F6}{\text{It is a }\infty / \infty \text{ case, L'Hôpital's rule applies.}} \\ & = \lim_{x \to 0^+} \frac {\frac 1x}{-\frac 1{x^2}} & \small \color{#3D99F6}{\text{Differentiate up and down w.r.t. }x.} \\ & = \lim_{x \to 0^+} -x \\ & = \color{#3D99F6}{0} \end{aligned}

About L'Hôpital's rule .

Perfect one (+1)

Ashish Menon - 4 years, 10 months ago

For 0 1 ln ( x ) d x \int_{0}^{1} \ln(x)\,dx

0 1 ln ( x ) d x = x ln ( x ) x + C Apply integration by parts to get the indefinite = 1 0 = 1 \begin{aligned} \int_{0}^{1} \ln(x)\,dx &= x\ln(x) - x+ \color{grey}{\ce{C}} \quad\quad\quad\quad\quad\quad{\text{Apply integration by parts to get the indefinite}} \\&= -1-0 \\&= -1 \space \square \end{aligned}

Take note : integration by parts: u v = u v u v \int uv' = uv-\int u'v

ADIOS!!! \large \text{ADIOS!!!}

Md Zuhair
Aug 4, 2016

Using Byparts... We will get x ( l o g x 1 ) x(logx -1) in limits 0 1 0 - 1 . Then Putting these values we get. -1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...