Integrate this!

Calculus Level 5

1 0 4 0 cos ( 3 x ) x 2 + 1 d x = ? \large \left \lfloor 10^4 \int_0^\infty \frac{ \cos(3x)}{x^2+1} \, dx \right \rfloor = \ ?

You may only use a calculator for the final step of your working.


The answer is 782.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Maggie Miller
Jul 19, 2015

We'll evaluate 0 cos ( 3 x ) x 2 + 1 d x \int_0^{\infty}\frac{\cos(3x)}{x^2+1}dx using complex integration.

First, we'll evaluate the related integral C e 3 i z 1 + z 2 d z \int_C\frac{e^{3iz}}{1+z^2}dz where C C is the loop in the complex pane consisting of the real interval [ R , R ] [-R,R] and the semicircle γ \gamma lying above [ R , R ] [-R,R] , for some large real number R R .

We have C e 3 i z 1 + z 2 d z = R R e 3 i x 1 + x 2 d x + γ e 3 i z 1 + z 2 d z . ( ) \int_C\frac{e^{3iz}}{1+z^2}dz=\int_{-R}^{R}\frac{e^{3ix}}{1+x^2}dx+\int_{\gamma}\frac{e^{3iz}}{1+z^2}dz. (*)

Note e 3 i z 1 + z 2 = e 3 i z ( z i ) ( z + i ) \frac{e^{3iz}}{1+z^2}=\frac{e^{3iz}}{(z-i)(z+i)} has two simple poles located at i , i i,-i . Only i i lies in the region enclosed by C C . By Cauchy's integration formula, C e 3 i z 1 + z 2 d z = 2 π i e 3 i i i + i = π e 3 . ( ) \int_C\frac{e^{3iz}}{1+z^2}dz=2\pi i\cdot \frac{e^{3i\cdot i}}{i+i}=\frac{\pi}{e^3}. (**)

We find an upper bound on the integral over γ \gamma by paramaterizing z = R e i t z=Re^{it} , t [ 0 , π ] t\in[0,\pi] :

γ e 3 i z 1 + z 2 d z = 0 π e 3 i R e i t R i e i t 1 + R 2 e 2 i t d t 0 π e 3 i R e i t R i e i t 1 + R 2 e 2 i t d t \displaystyle\bigg|\int_{\gamma}\frac{e^{3iz}}{1+z^2}dz\bigg|=\bigg|\int_{0}^{\pi}\frac{e^{3iRe^{it}}Rie^{it}}{1+R^2e^{2it}}dt\bigg|\le\int_{0}^{\pi}\bigg|\frac{e^{3iRe^{it}}Rie^{it}}{1+R^2e^{2it}}\bigg|dt

= 0 π R e 3 i R ( cos ( t ) + i sin ( t ) ) R 2 1 d t = 0 π R e 3 R sin ( t ) R 2 1 \displaystyle=\int_{0}^{\pi}\frac{|Re^{3iR(\cos(t)+i\sin(t))}|}{R^2-1}dt=\int_{0}^{\pi}\frac{Re^{-3R\sin(t)}}{R^2-1}

0 π R R 2 1 d t = π R R 2 1 0 as R . \le\int_{0}^{\pi}\frac{R}{R^2-1}dt=\frac{\pi R}{R^2-1}\to 0\text{ as }R\to\infty.

Thus, as R R\to\infty , the integral over γ \gamma goes to 0 0 . ( ) (***)

Then letting R R\to\infty , we find from ( ) , ( ) , (*),(**), and ( ) (***) :

π e 3 = e 3 i x 1 + x 2 d x \displaystyle\frac{\pi}{e^3}=\int_{-\infty}^{\infty}\frac{e^{3ix}}{1+x^2}dx

( π e 3 ) = ( e 3 i x 1 + x 2 d x ) \displaystyle\Re\left(\frac{\pi}{e^3}\right)=\Re\left(\int_{-\infty}^{-{\infty}}\frac{e^{3ix}}{1+x^2}dx\right)

π e 3 = cos ( 3 x ) 1 + x 2 d x . \displaystyle\frac{\pi}{e^3}=\int_{-\infty}^{\infty}\frac{\cos(3x)}{1+x^2}dx.

Then since cos ( 3 x ) 1 + x 2 \frac{\cos(3x)}{1+x^2} is an even function, we are left with

0 cos ( 3 x ) 1 + x 2 d x = 1 2 cos ( 3 x ) 1 + x 2 d x = π 2 e 3 . \displaystyle\int_{0}^{\infty}\frac{\cos(3x)}{1+x^2}dx=\frac{1}{2}\int_{-\infty}^{\infty}\frac{\cos(3x)}{1+x^2}dx=\frac{\pi}{2e^3}.

We use a calculator to find 1 0 4 π 2 e 3 782.1 , 10^4\frac{\pi}{2e^3}\approx 782.1, so the answer is 782 \boxed{782} .

Yep. Did the same! :)

Kartik Sharma - 5 years, 10 months ago
Lu Chee Ket
Oct 30, 2015

Instruction not followed.

Int(10000*7.8205344E-02) = 782

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...