Avant Garde

Calculus Level 5

0 t e 2 t cos ( t ) d t = ? \large \int_0^\infty t e^{-2t} \cos(t) \, dt = \ ?


The answer is 0.12000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sudeep Salgia
Jul 19, 2015

Consider the integral,
I ( a ) = 0 e a t cos t d t \displaystyle I(a) = \int_0^{\infty } e^{-at} \cos t \text{ d}t
I ( a ) = 0 t e a t cos t d t \displaystyle \Rightarrow - I'(a) = \int_0^{\infty} t e^{-at} \cos t \text{ d}t ,

which is the required value. Our whole effort is now towards finding out the value of I ( a ) I(a) .

I ( a ) = 0 e a t cos t d t = R ( 0 e a t e i t d t ) = R ( e ( a + i ) t a + i 0 ) = R ( 1 a i ) = 1 a 2 + 1 \displaystyle \begin{array}{c}\\ I(a) && = \int_0^{\infty } e^{-at} \cos t \text{ d}t \\ && = \mathfrak{R} \left( \int_0^{\infty } e^{-at} e^{it} \text{ d}t \right) \\ && = \mathfrak{R} \left( \frac{e^{(-a+i)t}}{-a + i } |_0^{\infty} \right) \\ && = \mathfrak{R} \left( \frac{1}{a - i} \right) \\ && = \frac{1}{a^2 + 1} \\ \end{array}

I ( a ) = a 2 1 ( a 2 + 1 ) 2 \displaystyle \Rightarrow - I'(a) = \frac{a^2 -1}{(a^2 + 1)^2} .

We want to calculate I ( 2 ) - I'(2) which evaluates to 3 25 \boxed{ \dfrac{3}{25}} .

Note: For those who know Laplace transforms it it pretty easy to realize that I ( a ) I(a) is nothing but L ( cos t ) \mathfrak{L} ( \cos t ) which is a standard value.

Moderator note:

Great observation of combining e t e^t with cos t \cos t into a single expression.

How did you get the 625? May i know? Thanks.

A Former Brilliant Member - 5 years, 11 months ago

Log in to reply

I think the answer to question has been changed. If you still find something vague in the solution please let me know.

Sudeep Salgia - 5 years, 10 months ago

On the last line of the computation of I(a) you wrote 1/(1+a^2) instead of a/1+a^2 the correct result. However you used the correct function when computing the derivative of I(a).

Dan Timsit - 2 years, 7 months ago
Rimson Junio
Jul 19, 2015

The integral is equivalent to finding the Laplace Transform of t c o s ( t ) t\cdot cos(t) evaluated at s = 2 s=2 . L a p l a c e ( t c o s ( t ) ) = s 2 1 ( s 2 + 1 ) 2 Laplace(t\cdot cos(t))=\frac{s^2-1}{(s^2+1)^2} . Evaluating the transform at s = 2 s=2 , gives you 3 25 \frac{3}{25} .

Md Zuhair
Jan 17, 2019

My solution is not like the other two. My solution goes like,

Let I 1 = 0 t e 2 t cos t d t I_{1}= \displaystyle{\int_{0}^{\infty} t e^{-2t} \cos t dt} and I 2 = 0 t e 2 t sin t d t I_{2}= \displaystyle{\int_{0}^{\infty} t e^{-2t} \sin t dt}

Now If we take I 1 + i I 2 I_{1}+i I_{2} where i = 1 i=\sqrt{-1} .

So we get I 1 + i I 2 = 0 t e 2 t ( cos t + i sin t ) d t I_{1}+iI_{2}=\displaystyle{\int_{0}^{\infty} t e^{-2t} (\cos t+ i \sin t) dt}

I 1 + i I 2 = 0 t e 2 t ( e i t ) d t \implies I_{1}+iI_{2}=\displaystyle{\int_{0}^{\infty} t e^{-2t} (e^{it}) dt}

I 1 + i I 2 = 0 t ( e i t 2 t ) d t \implies I_{1}+iI_{2}=\displaystyle{\int_{0}^{\infty} t(e^{it-2t}) dt}

After solving the integral taking i to be just a constant(It is a constant :P anyway)!!

We get I 1 + i I 2 = 3 + 4 i 25 I_{1}+iI_{2} = \dfrac{3+4i}{25}

So equating real part, we get I 1 = 3 25 = 0.12 I_{1} = \dfrac{3}{25} = \boxed{0.12} .

By the way, through my method, We also get another integral I 2 = 0 t e 2 t sin t d t = 4 25 I_{2}= \displaystyle{\int_{0}^{\infty} t e^{-2t} \sin t dt}= \dfrac{4}{25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...