Can we cancel them out?

Calculus Level 3

0 1 4 x 3 ( d 2 d x 2 ( 1 x 2 ) 5 ) d x = ? \large \int _{ 0 }^{ 1 }{ { 4x }^{ 3 } } \left( \frac { { d }^{ 2 } }{ { dx }^{ 2 } } { (1-{ x }^{ 2 }) }^{ 5 } \right) \, dx = \ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Curtis Clement
Aug 14, 2015

We want to get reduce the order of the derivative (or get rid of it completely) so this hints at the fact that integration by parts may be useful and possibly integration by substitution.

I = 0 1 4 x 3 ( d 2 d x 2 ( 1 x 2 ) 5 ) d x \ I = \int_{0}^{1} 4x^3 ( \frac{d^2}{dx^2}(1-x^2)^5 ) dx = [ 4 x 3 ( d d x ( 1 x 2 ) 5 ) ] 0 1 0 1 12 x 2 ( d d x ( 1 x 2 ) 5 ) d x \ = [4x^3 ( \frac{d}{dx}(1-x^2)^5 )]_0^1 -\int_{0}^{1} 12x^2 ( \frac{d}{dx}(1-x^2)^5 ) dx = 12 0 1 x 2 ( d d x ( 1 x 2 ) 5 ) d x \ = -12 \int_{0}^{1} x^2 ( \frac{d}{dx}(1-x^2)^5 ) dx because the derivative of ( 1 x 2 ) k \ (1-x^2)^k ( k 1 \ k \ne -1 ) will have a factor of ( 1 x 2 ) \ (1-x^2) which will equal zero when x = 1 and 4 x 3 \ 4x^3 will equal zero when x = 0. Now let S = 0 1 x 2 ( d d x ( 1 x 2 ) 5 ) d x \ S = \int_{0}^{1} x^2 ( \frac{d}{dx}(1-x^2)^5 ) dx : S = [ x 2 ( 1 x 2 ) 5 ] 0 1 0 1 2 x ( 1 x 2 ) 5 d x \ S = [x^2(1-x^2)^5]_0^1 - \int_{0}^{1} 2x(1-x^2)^5 dx = 0 1 2 x ( 1 x 2 ) 5 d x \ = - \int_{0}^{1} 2x(1-x^2)^5 dx Now let u = x 2 \ u = x^2 and use integration by substitution (and inspection): S = 0 1 ( 1 u ) 5 = [ 1 6 ( 1 u ) 6 ] 0 1 = 1 6 \ S = -\int_{0}^{1} (1-u)^5 = [\frac{1}{6} (1-u)^6]_0^1 = -\frac{1}{6} I = 12 S = 2 \therefore\ I = -12S = \boxed{2}

0 1 4 x 3 ( d 2 d x 2 ( 1 x 2 ) 5 ) d x = 0 1 4 x 3 ( d 2 d x 2 ( 1 5 x 2 + 10 x 4 10 x 6 + 5 x 8 x 10 ) ) = 0 1 4 x 3 ( d d x ( 10 x + 40 x 3 60 x 5 + 40 x 7 10 x 9 ) ) = 0 1 4 x 3 ( 10 + 120 x 2 300 x 4 + 280 x 6 90 x 8 ) d x = 0 1 ( 40 x 3 + 480 x 5 1200 x 7 + 1120 x 9 360 x 11 ) = [ 40 x 4 4 + 480 x 6 6 1200 x 8 8 + 1120 x 10 10 360 x 12 12 ] 0 1 = [ 10 x 4 + 80 x 6 150 x 8 + 112 x 10 30 x 12 ] 0 1 = 10 + 80 150 + 112 30 = 2 \displaystyle \int_0^1 4x^3\left(\frac{d^2}{dx^2} \left(1-x^2 \right)^5 \right) dx \\ = \displaystyle \int_0^1 4x^3\left(\frac{d^2}{dx^2} \left(1 - 5x^2 + 10x^4 - 10x^6 + 5x^8 - x^{10} \right) \right) \\ = \displaystyle \int_0^1 4x^3 \left( \frac {d} {dx} \left(- 10x + 40x^3 - 60x^5 + 40x^7 - 10x^9 \right) \right) \\ = \displaystyle \int_0^1 4x^3 \left( - 10 + 120x^2 - 300x^4 + 280x^6 - 90x^8 \right) dx \\ = \displaystyle \int _0 ^1 \left( - 40x^3 + 480x^5 - 1200x^7 + 1120 x^9 - 360x^{11} \right) \\ = \displaystyle \left[ - \frac{40x^4}{4} + \frac{480x^6}{6} - \frac{ 1200 x^8}{8} + \frac{1120 x^{10}}{10} - \frac{360x^{12}}{12} \right]_0^1 \\ = \displaystyle \left[ - 10x^4 + 80x^6 - 150 x^8 + 112 x^{10} - 30 x^{12} \right]_0^1 \\ = - 10 + 80 - 150 + 112 - 30 \\ = \boxed{2}

Aditya Todi
Aug 14, 2015

0 1 4 x 3 ( d 2 d x 2 ( 1 x 2 ) 5 ) d x \displaystyle \int_{0}^{1} 4x^{3}(\frac{d^{2}}{dx^{2}}(1-x^{2})^{5})dx = ( 4 x 3 ( d d x ( 1 x 2 ) 5 ] 0 1 0 1 12 x 2 ( d d x ( 1 x 2 ) 5 ) d x = (4x^{3}(\frac{d}{dx}(1-x^{2})^{5}]_{0}^{1} - \displaystyle \int_{0}^{1} 12x^{2}(\frac{d}{dx}(1-x^{2})^{5})dx = 0 1 24 ( 1 x 2 ) 5 d x =\displaystyle \int_{0}^{1}24(1-x^{2})^{5}dx We let x 2 = u = > d x = d u 2 x x^{2}=u => dx = \frac{du}{2x} . Therefore 0 1 12 ( 1 u ) 5 d u \displaystyle \int_{0}^{1}12(1-u)^{5}du ( 2 ( 1 u ) 6 ] 0 1 = 2 (-2(1-u)^{6}]_{0}^{1} = 2

Hadia Qadir
Aug 18, 2015

The integral of (-40 x^3 (x^2-1)^3 (9 x^2-1)) dx from 0 to 1 = 2. If you cannot take the second derivative in your head, the make a change of variable and arrive at the same answer after a little more time.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...