∫ 0 1 4 x 3 ( d x 2 d 2 ( 1 − x 2 ) 5 ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∫ 0 1 4 x 3 ( d x 2 d 2 ( 1 − x 2 ) 5 ) d x = ∫ 0 1 4 x 3 ( d x 2 d 2 ( 1 − 5 x 2 + 1 0 x 4 − 1 0 x 6 + 5 x 8 − x 1 0 ) ) = ∫ 0 1 4 x 3 ( d x d ( − 1 0 x + 4 0 x 3 − 6 0 x 5 + 4 0 x 7 − 1 0 x 9 ) ) = ∫ 0 1 4 x 3 ( − 1 0 + 1 2 0 x 2 − 3 0 0 x 4 + 2 8 0 x 6 − 9 0 x 8 ) d x = ∫ 0 1 ( − 4 0 x 3 + 4 8 0 x 5 − 1 2 0 0 x 7 + 1 1 2 0 x 9 − 3 6 0 x 1 1 ) = [ − 4 4 0 x 4 + 6 4 8 0 x 6 − 8 1 2 0 0 x 8 + 1 0 1 1 2 0 x 1 0 − 1 2 3 6 0 x 1 2 ] 0 1 = [ − 1 0 x 4 + 8 0 x 6 − 1 5 0 x 8 + 1 1 2 x 1 0 − 3 0 x 1 2 ] 0 1 = − 1 0 + 8 0 − 1 5 0 + 1 1 2 − 3 0 = 2
∫ 0 1 4 x 3 ( d x 2 d 2 ( 1 − x 2 ) 5 ) d x = ( 4 x 3 ( d x d ( 1 − x 2 ) 5 ] 0 1 − ∫ 0 1 1 2 x 2 ( d x d ( 1 − x 2 ) 5 ) d x = ∫ 0 1 2 4 ( 1 − x 2 ) 5 d x We let x 2 = u = > d x = 2 x d u . Therefore ∫ 0 1 1 2 ( 1 − u ) 5 d u ( − 2 ( 1 − u ) 6 ] 0 1 = 2
The integral of (-40 x^3 (x^2-1)^3 (9 x^2-1)) dx from 0 to 1 = 2. If you cannot take the second derivative in your head, the make a change of variable and arrive at the same answer after a little more time.
Problem Loading...
Note Loading...
Set Loading...
We want to get reduce the order of the derivative (or get rid of it completely) so this hints at the fact that integration by parts may be useful and possibly integration by substitution.
I = ∫ 0 1 4 x 3 ( d x 2 d 2 ( 1 − x 2 ) 5 ) d x = [ 4 x 3 ( d x d ( 1 − x 2 ) 5 ) ] 0 1 − ∫ 0 1 1 2 x 2 ( d x d ( 1 − x 2 ) 5 ) d x = − 1 2 ∫ 0 1 x 2 ( d x d ( 1 − x 2 ) 5 ) d x because the derivative of ( 1 − x 2 ) k ( k = − 1 ) will have a factor of ( 1 − x 2 ) which will equal zero when x = 1 and 4 x 3 will equal zero when x = 0. Now let S = ∫ 0 1 x 2 ( d x d ( 1 − x 2 ) 5 ) d x : S = [ x 2 ( 1 − x 2 ) 5 ] 0 1 − ∫ 0 1 2 x ( 1 − x 2 ) 5 d x = − ∫ 0 1 2 x ( 1 − x 2 ) 5 d x Now let u = x 2 and use integration by substitution (and inspection): S = − ∫ 0 1 ( 1 − u ) 5 = [ 6 1 ( 1 − u ) 6 ] 0 1 = − 6 1 ∴ I = − 1 2 S = 2