Integrate this

Calculus Level 3

Let [a] denote the greatest integer which is less than or equal to a. Then the value of the given integration is π / 2 π / 2 [ S i n x C o s x ] d x \int _{ -\pi /2 }^{ \pi /2 }{ [Sinx Cos x } ]dx

π / 2 \pi/2 π \pi π / 2 -\pi/2 π -\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Suyash Mittal
Apr 24, 2014

I = π / 2 π / 2 [ 1 2 S i n 2 x ] d x I\quad =\quad \int _{ -\pi /2 }^{ \pi /2 }{ [\frac { 1 }{ 2 } } Sin2x]dx Put 2 x = θ 2x = \theta or, 2 d x = d θ 2dx = d\theta I = 1 2 π π [ 1 2 S i n θ ] d θ = 1 2 [ π 0 ( 1 ) d x + 0 π 0 d x ] I\quad =\quad \frac { 1 }{ 2 } \int _{ -\pi }^{ \pi }{ [\frac { 1 }{ 2 } } Sin\theta ]d\theta \quad =\quad \frac { 1 }{ 2 } [\int _{ -\pi }^{ 0 }{ (-1)dx\quad +\quad \int _{ 0 }^{ \pi }{ 0\quad dx] } } = 1 2 ( ) ( x ) π 0 + 0 = 1 2 ( 0 + π ) = π 2 =\frac { 1 }{ 2 } (-){ (x) }_{ -\pi }^{ 0 }\quad +\quad 0\quad =\quad -\frac { 1 }{ 2 } (0+\pi )\quad =\quad -\frac { \pi }{ 2 }

Even though I clicked π 2 -\frac{\pi}{2} , it displayed that I clicked π 2 \frac{\pi}{2} .

Anish Puthuraya - 7 years, 1 month ago

Log in to reply

Might be some kind of bug

Suyash Mittal - 7 years, 1 month ago

how could you change the integrand in the second last step

Rajdeep Dhingra - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...