Integrate With Inverse

Calculus Level 2

2 2 tan 1 ( e sin x ) d x \large \int_{-2}^2 \tan^{-1} \left( e^{\sin x} \right) \, dx

The integral above has a closed form. Find the value of this closed form.

Give your answer to 2 decimal places.


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
May 19, 2016

Relevant wiki: Integration Tricks

First note: tan 1 ( e sin x ) = cot 1 ( e sin x ) = π 2 tan 1 ( e sin x ) \small{\color{#69047E}{\tan^{-1} \left( e^{\sin x} \right) =\cot^{-1}\left( e^{-\sin x} \right) =\dfrac{\pi}2-\tan^{-1} \left( e^{-\sin x} \right)}} Next, denote the integral by R \mathfrak R and apply a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle\int_a^bf(x)\mathrm{d}x=\int_a^bf(a+b-x)\mathrm{d}x and add the two to get:

2 R = 2 2 ( tan 1 ( e sin x ) + tan 1 ( e sin x ) ) d x 2\mathfrak R=\displaystyle\int_{-2}^2(\tan^{-1} \left( e^{-\sin x} \right) +\color{#69047E}{\tan^{-1} \left( e^{\sin x} \right) })\mathrm{d}x

= 2 2 ( tan 1 ( e sin x ) + π 2 tan 1 ( e sin x ) ) d x =\displaystyle\int_{-2}^2(\cancel{\tan^{-1} \left( e^{-\sin x} \right) }+\color{#69047E}{\dfrac{\pi}2\cancel{-\tan^{-1} \left( e^{-\sin x} \right)}})\mathrm{d}x

= 2 2 π 2 d x = 2 π \large =\displaystyle\int_{-2}^{2}\dfrac{\pi}2\mathrm{d}x=2\pi

R = π 3.14 \Large\therefore\mathfrak{R}=\pi\approx\boxed{3.14}

Kishore S. Shenoy
May 26, 2016

Using properties of Definite Integrals, a a f ( x ) d x = 0 a f ( x ) + f ( x ) d x \displaystyle \int_{-a}^a f(x)\, dx = \int_0^a f(x) + f(-x)\, dx

So I = 0 2 arctan ( e sin x ) + arctan ( e sin ( x ) ) d x = 0 2 arctan ( e sin x ) + arctan ( 1 e sin x ) d x \begin{aligned}I &= \int_0^2 \arctan \left(e^{\sin x}\right)+\arctan \left(e^{\sin (-x)}\right)\,dx\\ &= \int_0^2 \arctan \left(e^{\sin x}\right)+\arctan \left(\dfrac1{e^{\sin x}}\right)\,dx\end{aligned}

Now since e sin x > 0 e^{\sin x} >0 for all real values of x x , arctan 1 x = a r c c o t x = π 2 arctan x \arctan \dfrac1x = \mathrm{arccot }~x = \dfrac\pi2 - \arctan x

So, I I becomes I = 0 2 arctan ( e sin x ) + π 2 arctan ( e sin x ) d x = 0 2 π 2 d x = π \begin{aligned}I &= \int_0^2 \arctan \left(e^{\sin x}\right)+\dfrac\pi2 - \arctan \left(e^{\sin x}\right)\,dx\\ &= \int_0^2 \dfrac\pi2\,dx\\ \Large&= \Large\boxed{\Large\pi}\end{aligned}

Moderator note:

When manipulating such integrals, you also have to be careful that we do not have an \infty - \infty scenario. This can be justified by placing appropriate bounds on arctan e sin x \arctan e^ { \sin x } .

FYI Typo in the equation

arctan 1 x = a r c c o t x = π 2 arctan x \arctan \dfrac1x = \mathrm{arccot }~x = \dfrac\pi2 - \arctan x

Calvin Lin Staff - 5 years ago

Can anyone explain the Challenge master note, please ?

Aditya Sky - 4 years, 1 month ago

Log in to reply

As an explicit example, 1 1 1 x d x \int_{-1}^1 \frac{ 1}{x} \, dx is undefined. (If you disagree, review how such integrals are defined when we get close to a value at infinity.)

However, if you used this method, you would claim that the answer is 0.

Calvin Lin Staff - 4 years, 1 month ago

I used integration by parts.

Let u = a r c t a n ( e s i n x ) , d v = d x u=arctan(e^{sinx}) , dv=dx

Then,

d u d x = e s i n x c o s x 1 + e 2 s i n x , v = x \frac{du}{dx}=\frac{e^{sinx}cosx}{1+e^{2sinx}}, v=x

The integral then becomes,

2 2 a r c t a n ( e s i n x ) d x = x a r c t a n ( e s i n x ) 2 2 2 2 x e s i n x c o s x 1 + e 2 s i n x d x \displaystyle\int_{-2}^{2} arctan(e^{sinx})dx=xarctan(e^{sinx})\biggl|_{-2}^2-\displaystyle\int_{-2}^{2}\frac{xe^{sinx}cosx}{1+e^{2sinx}}dx

The function in the second integral is odd, which we can prove by plugging in some -x. So the integral itself is zero. This means,

2 2 a r c t a n ( e s i n x ) d x = x a r c t a n ( e s i n x ) 2 2 \displaystyle\int_{-2}^{2} arctan(e^{sinx})dx=xarctan(e^{sinx})\biggl|_{-2}^2

This is equal to π \pi

rain ko - 1 year ago

Log in to reply

Okay. Why don't you go ahead and post it as a solution?

Kishore S. Shenoy - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...