Integrate with power of e

Calculus Level 4

e 6 x ( 1 + e 2 x ) 7 2 d x = A B \large{\displaystyle \int^{\infty}_{-\infty} \frac{e^{-6x}}{(1+e^{-2x})^{\frac{7}{2}}}dx=\frac{A}{B}}

where A , B A,B are co prime positive integers.

Find B A B-A


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 20, 2015

e 6 x ( 1 + e 2 x ) 7 2 d x = 1 ( u 1 ) 3 2 ( u 1 ) u 7 2 d x Let u = 1 + e 2 x , e 2 x = u 1 , d u = 2 e 2 x d x = 1 2 1 ( u 1 ) 2 u 7 2 d u = 1 2 1 u 2 2 u + 1 u 7 2 d u = 1 2 1 ( 1 u 3 2 2 u 5 2 + 1 u 7 2 ) d u = 1 2 [ 2 u 1 2 + 4 3 u 3 2 2 5 u 5 2 ] 1 = 1 2 [ 0 + 2 4 3 + 2 5 ] = 1 2 [ 30 20 + 6 15 ] = 8 15 \begin{aligned} \int_{-\infty}^{\infty} \frac{e^{-6x}}{(1+e^{-2x})^{\frac{7}{2}}} dx & = \int_{\infty}^{1} \frac{(u-1)^3}{-2(u-1)u^{\frac{7}{2}}} dx \quad \quad \small \color{#3D99F6}{\text{Let } u = 1+e^{-2x}, \space e^{-2x} = u-1, \space du = -2e^{-2x}dx} \\ & = \frac{1}{2} \int_{1}^{\infty} \frac{(u-1)^2}{u^{\frac{7}{2}}} du \\ & = \frac{1}{2} \int_{1}^{\infty} \frac{u^2-2u+1}{u^{\frac{7}{2}}} du \\ & = \frac{1}{2} \int_{1}^{\infty} \left( \frac{1}{u^{\frac{3}{2}}} - \frac{2}{u^{\frac{5}{2}}} + \frac{1}{u^{\frac{7}{2}}} \right) du \\ & = \frac{1}{2}\left[ - \frac{2}{u^{\frac{1}{2}}} + \frac{4}{3u^{\frac{3}{2}}} - \frac{2}{5u^{\frac{5}{2}}} \right]_1^\infty \\ & = \frac{1}{2}\left[ 0 + 2 - \frac{4}{3} + \frac{2}{5} \right] = \frac{1}{2}\left[ \frac{30-20+6}{15} \right] = \boxed{\dfrac{8}{15}} \end{aligned}

Nicely done sir. I did by putting e x = tan z e^{-x}=\tan z

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

Ya best move to do it with beta-gamma function

Md Zuhair - 3 years, 11 months ago

I'm not seeing where you substituted dx to du. This is exactly how I did it, but your substitution is unclear since you leave dx when there needs to be a du.

M M - 5 years, 5 months ago

@Chew-Seong Cheong Sir , I think there are a few typos in the solution (dx should be replaced with du)

Ankit Kumar Jain - 3 years ago

Log in to reply

Yeah.. true. That I guess is a general reflex😂😂😂 to put DX after integral

Md Zuhair - 3 years ago

Thanks, I have changed them.

Chew-Seong Cheong - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...