Integrate with rule

Calculus Level 3

1 5 d x x ( 1 + x ) 5 / 2 = ? \int_{1}^{5} \frac{dx}{\sqrt{x} (1+x)^{5/2}}=?


The answer is 0.1400800402.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 29, 2018

I = 1 5 d x x ( 1 + x ) 5 2 Let u = x d u = 1 2 x d x = 2 1 5 d u ( 1 + u 2 ) 5 2 Let u = tan θ d u = sec 2 θ d θ = 2 π 4 tan 1 5 d θ sec 3 θ = 2 π 4 tan 1 5 cos 3 θ d θ = 2 1 2 5 6 ( 1 sin 2 θ ) d sin θ = 2 [ sin θ sin 3 θ 3 ] 1 2 5 6 = 13 5 9 6 5 6 2 0.140 \begin{aligned} I & = \int_1^5 \frac {dx}{\sqrt x(1+x)^\frac 52} & \small \color{#3D99F6} \text{Let }u = \sqrt x \implies du = \frac 1{2\sqrt x} dx \\ & = 2 \int_1^{\sqrt 5} \frac {du}{(1+u^2)^\frac 52} & \small \color{#3D99F6} \text{Let }u = \tan \theta \implies du = \sec^2 \theta \ d\theta \\ & = 2 \int_\frac \pi 4^{\tan^{-1} \sqrt 5} \frac {d\theta}{\sec^3 \theta} \\ & = 2 \int_\frac \pi 4^{\tan^{-1} \sqrt 5} \cos^3 \theta \ d\theta \\ & = 2 \int_{\frac 1{\sqrt 2}}^{\sqrt{\frac 56}} \left(1-\sin^2 \theta\right) d\sin \theta \\ & = 2 \left[\sin \theta - \frac {\sin^3 \theta}3 \right]_{\frac 1{\sqrt 2}}^{\sqrt{\frac 56}} \\ & = \frac {13\sqrt 5}{9\sqrt 6} - \frac 5{6\sqrt 2} \\ & \approx \boxed{0.140} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...