Integrate with series

Calculus Level 5

If f ( x ) = n = 0 ( x 2 ) n ( 2 n + 1 ) ! \large{f(x)=\displaystyle \sum^{\infty}_{n=0} \frac{(-x^2)^n}{(2n+1)!}} such that the equation below is true for integers A A and B B , find the value of A + B A+B .

0 π 2 f ( x ) f ( π 2 x ) d x = A π B 0 π f ( x ) d x \large{\displaystyle \int^{\frac{\pi}{2}}_{0} f(x)f\left (\frac{\pi}{2}-x \right )dx=\frac{A}{\pi^{B}}\displaystyle \int^{\pi}_{0} f(x) dx}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 16, 2015

f ( x ) = n = 0 ( x 2 ) n ( 2 n + 1 ) ! = n = 0 ( 1 ) n x 2 n + 1 x ( 2 n + 1 ) ! = sin x x \begin{aligned} f(x) & = \sum_{n=0}^\infty \frac{(-x^2)^n}{(2n+1)!} = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{x(2n+1)!} = \frac{\sin{x}}{x} \end{aligned}

0 π 2 f ( x ) f ( π 2 x ) d x = 0 π 2 sin x x ˙ sin ( π 2 x ) π 2 x d x = 0 π 2 sin x cos x x ( π 2 x ) d x = 0 π 2 sin ( 2 x ) x ( π 2 x ) d x Let u = 2 x d x = 1 2 d u = 0 π sin ( u ) u ( π u ) d u We note that: 1 u + 1 π u = π u ( π u ) = 1 π 0 π ( 1 u + 1 π u ) sin u d u Since: sin ( π u ) = sin u = 1 π 0 π ( sin u u + sin ( π u ) π u ) d u Let v = π u d u = d v = 1 π ( 0 π sin u u d u π 0 sin v v d v ) = 1 π ( 0 π sin u u d u + 0 π sin v v d v ) = 2 π 0 π f ( x ) d x \begin{aligned} \int_0^\frac{\pi}{2} f(x) f\left(\frac{\pi}{2} - x \right) dx & = \int_0^\frac{\pi}{2} \frac{\sin{x}}{x}\dot{} \frac{\sin{\left(\frac{\pi}{2} - x\right)}}{\frac{\pi}{2} - x} dx \\ & = \int_0^\frac{\pi}{2} \frac{\sin{x}\cos{x}}{x\left(\frac{\pi}{2} - x\right)} dx \\ & = \int_0^\frac{\pi}{2} \frac{\sin{(2x)}}{x\left(\pi - 2x \right)} dx \quad \quad \small \color{#3D99F6}{\text{Let } u = 2x \quad \Rightarrow dx = \frac{1}{2} du} \\ & = \int_0^\pi \frac{\sin{(u)}}{u\left(\pi - u \right)} du \quad \quad \small \color{#3D99F6}{\text{We note that: } \frac{1}{u} + \frac{1}{\pi-u} = \frac{\pi}{u(\pi-u)}} \\ & = \frac{1}{\pi} \int_0^\pi \left(\frac{1}{u}+\frac{1}{\pi-u}\right)\sin{u} \space du \quad \quad \small \color{#3D99F6}{\text{Since: } \sin{(\pi-u)} = \sin{u}} \\ & = \frac{1}{\pi} \int_0^\pi \left(\frac{\sin{u}}{u} + \frac{\sin{(\pi-u)}}{\pi - u}\right) du \quad \quad \small \color{#3D99F6}{\text{Let } v = \pi - u \quad \Rightarrow du = -dv} \\ & = \frac{1}{\pi} \left( \int_0^\pi \frac{\sin{u}}{u} du - \int_\pi^0 \frac{\sin{v}}{v} dv \right) \\ & = \frac{1}{\pi} \left( \int_0^\pi \frac{\sin{u}}{u} du + \int_0^\pi \frac{\sin{v}}{v} dv \right) \\ & = \frac{2}{\pi} \int_0^\pi f(x) dx \end{aligned}

A + B = 2 + 1 = 3 \Rightarrow A + B = 2 + 1 = \boxed{3}

Thats exactly the same solution i thought, by the way nice solution sir :)

Tanishq Varshney - 5 years, 9 months ago

Log in to reply

I too did the same. But I'm thinking if there is a solution without using \sinc ( x ) \sinc(x) function i.e. just using the summation definition of f ( x ) f(x) only.

Kartik Sharma - 5 years, 9 months ago

Log in to reply

Yes, it should work. They are identical. It is just that, it may be tedious.

Chew-Seong Cheong - 5 years, 9 months ago

@Chew-Seong Cheong Sir , there is a typo in the 1st line written with blue (It should be du instead of dx)

Ankit Kumar Jain - 3 years ago

Log in to reply

Thanks, I have amended it.

Chew-Seong Cheong - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...