If ∫ 0 2 π f ( x ) d x = B A π
where A , B are co prime natural numbers.
Find A + B
given that
f ( x ) = 5 ∫ 0 x sin 2 ( x ) 6 ∫ 0 x . . . . . . . . . . ∫ 0 x sin 2 ( x ) 2 0 1 4 ∫ 0 x sin 2 ( x ) 2 0 1 5 ∫ 0 x sin 2 ( x ) 2 0 1 6 ∫ 0 x sin ( 2 0 1 7 x ) sin 2 0 1 5 ( x ) ( d x ) 2 0 1 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
∫ sin ( ( n + 2 ) x ) sin n ( x ) d x
∫ sin ( ( n + 1 ) x + x ) sin n ( x ) d x
n + 1 1 ∫ ( ( n + 1 ) sin ( ( n + 1 ) x ) cos ( x ) sin n ( x ) + ( n + 1 ) cos ( ( n + 1 ) x ) sin n + 1 ( x ) ) d x
n + 1 1 ∫ d ( sin ( ( n + 1 ) x ) sin n + 1 ( x ) )
= n + 1 sin ( ( n + 1 ) x ) sin n + 1 ( x ) + c
on applying the limits we get
= n + 1 sin ( ( n + 1 ) x ) sin n + 1 ( x )
we observe that after multiplying sin 2 ( x ) n + 1
we begin again from the very first step
in the end we get
f ( x ) = sin ( 5 x ) sin 5 ( x )