Integrate with sin cos #3

Calculus Level 5

If 0 π 2 f ( x ) d x = A B π \large{\displaystyle \int^{\frac{\pi}{2}}_{0} f(x) dx=\frac{A}{B}\pi}

where A , B A,B are co prime natural numbers.

Find A + B A+B

given that

f ( x ) = 5 0 x 6 sin 2 ( x ) 0 x . . . . . . . . . . 0 x 2014 sin 2 ( x ) 0 x 2015 sin 2 ( x ) 0 x 2016 sin 2 ( x ) 0 x sin ( 2017 x ) sin 2015 ( x ) ( d x ) 2012 \large{f\left( x \right) =5\int _{ 0 }^{ x }{ \frac { 6 }{ \sin ^{ 2 }{ \left( x \right) } } \int _{ 0 }^{ x }{ .......... } \int _{ 0 }^{ x }{ \frac { 2014 }{ \sin ^{ 2 }{ \left( x \right) } } \int _{ 0 }^{ x }{ \frac { 2015 }{ \sin ^{ 2 }{ \left( x \right) } } \int _{ 0 }^{ x }{ \frac { 2016 }{ \sin ^{ 2 }{ \left( x \right) } } } } \int _{ 0 }^{ x }{ \sin { \left( 2017x \right) \sin ^{ 2015 }{ \left( x \right) } { \left( dx \right) }^{ 2012 } } } } } }

Try my set


The answer is 65.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Sep 13, 2015

sin ( ( n + 2 ) x ) sin n ( x ) d x \large{\int \sin ((n+2)x) \sin^{n} (x) dx}

sin ( ( n + 1 ) x + x ) sin n ( x ) d x \large{\int \sin((n+1)x+x) \sin^{n} (x) dx}

1 n + 1 ( ( n + 1 ) sin ( ( n + 1 ) x ) cos ( x ) sin n ( x ) + ( n + 1 ) cos ( ( n + 1 ) x ) sin n + 1 ( x ) ) d x \large{\frac{1}{n+1} \int \left ((n+1)\sin ((n+1)x) \cos (x) \sin^{n} (x)+(n+1)\cos((n+1)x) \sin^{n+1} (x) \right )dx}

1 n + 1 d ( sin ( ( n + 1 ) x ) sin n + 1 ( x ) ) \large{\frac{1}{n+1} \int d(\sin((n+1)x) \sin^{n+1} (x))}

= sin ( ( n + 1 ) x ) sin n + 1 ( x ) n + 1 + c \large{=\frac{\sin((n+1)x) \sin^{n+1} (x)}{n+1}+c}

on applying the limits we get

= sin ( ( n + 1 ) x ) sin n + 1 ( x ) n + 1 \large{=\frac{\sin((n+1)x) \sin^{n+1} (x)}{n+1}}

we observe that after multiplying n + 1 sin 2 ( x ) \frac{n+1}{\sin^{2} (x)}

we begin again from the very first step

in the end we get

f ( x ) = sin ( 5 x ) sin 5 ( x ) \large{f(x)=\sin (5x) \sin^{5} (x) }

How do we integrate this??

Vidit Kulshreshtha - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...