Integrate with sin cos 4

Calculus Level 4

0 π 6 1 + 2 cos 2 x 1 + cot 2 x sin ( 6 x ) d x = ? \large{\displaystyle \int^{\frac{\pi}{6}}_{0} \sqrt{\frac{1+2 \cos 2x}{\sqrt{1+\cot^2 x}}} \sin (6x) \, dx=\ ?}

Give your answer to 3 decimal places.

Try my set


The answer is 0.266.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hobart Pao
Dec 13, 2015

= 0 π 6 1 + 2 cos 2 x csc x sin ( 6 x ) d x = \displaystyle \int^{\frac{\pi}{6}}_{0} \sqrt{\frac{1+2 \cos 2x}{\csc x}} \sin (6x) \text{ d}x = 0 π 6 sin x + 2 sin x ( 1 2 sin 2 x ) sin ( 6 x ) d x = \displaystyle \int^{\frac{\pi}{6}}_{0} \sqrt{\sin x + 2 \sin x\left(1-2\sin^{2}x\right) } \sin (6x) \text{ d}x = 0 π 6 3 sin x 4 sin 3 x sin ( 6 x ) d x = \displaystyle \int^{\frac{\pi}{6}}_{0} \sqrt{3\sin x - 4 \sin^{3}x} \sin (6x) \text{ d}x = 0 π 6 sin ( 3 x ) sin ( 6 x ) d x = \displaystyle \int^{\frac{\pi}{6}}_{0} \sqrt{\sin(3x)} \sin (6x) \text{ d}x = 0 π 6 sin ( 3 x ) 2 sin ( 3 x ) cos ( 3 x ) d x = \displaystyle \int^{\frac{\pi}{6}}_{0} \sqrt{\sin(3x)} 2\sin (3x)\cos(3x) \text{ d}x

Let u = sin ( 3 x ) ; d u 3 cos ( 3 x ) = d x u=\sin(3x); \dfrac{\text{d}u}{3 \cos (3x)}= \text{ d}x

= 2 3 0 1 u u d u = \displaystyle \dfrac{2}{3} \int^{1}_{0} \sqrt{u} u \text{ d}u = 2 3 0 1 u 3 2 d u = \displaystyle \dfrac{2}{3} \int^{1}_{0} u^{\frac{3}{2}} \text{ d}u = 2 3 2 5 u 5 2 0 1 = \displaystyle \left.\begin{matrix} \dfrac{2}{3} \cdot \dfrac{2}{5} u^{\frac{5}{2}} \end{matrix}\right|_{0}^{1} = 4 15 = \boxed{\dfrac{4}{15} }

or

. 266 \boxed{ \approx .266 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...