integratin 9

Calculus Level 3

2 4 sin 2 x x 2 d x = ? \large \int_2^4 \frac {\sin^2 x}{x^2}\ dx = \ ?


The answer is 0.0862.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 23, 2020

I = 2 4 sin 2 x x 2 d x = 2 4 1 cos ( 2 x ) 2 x 2 d x = 2 4 1 2 x 2 d x 2 4 cos ( 2 x ) 2 x 2 d x Let u = 2 x d u = 2 d x = 1 2 x 4 2 4 8 cos u u 2 d u By integration by parts = 1 8 + cos u u 4 8 + 4 8 sin u u d u = 1 8 + 1 8 cos 8 1 4 cos 4 + Si ( 8 ) Si ( 4 ) where Si ( ) denotes the sine integral. 0.0862 \begin{aligned} I & = \int_2^4 \frac {\sin^2 x}{x^2} dx \\ & = \int_2^4 \frac {1-\cos (2x)}{2x^2} dx \\ & = \int_2^4 \frac 1{2x^2} dx - \blue{\int_2^4 \frac {\cos (2x)}{2x^2} dx} & \small \blue{\text{Let }u = 2x \implies du = 2\ dx} \\ & = \frac 1{2x} \ \bigg|_4^2 - \blue{\int_4^8 \frac {\cos u}{u^2} du} & \small \blue{\text{By integration by parts}} \\ & = \frac 18 + \frac {\cos u}u \ \bigg|_4^8 + \int_4^8 \frac {\sin u}u du \\ & = \frac 18 + \frac 18 \cos 8 - \frac 14 \cos 4 + \text{ Si }(8) - \text{ Si }(4) & \small \blue{\text{where Si }(\cdot) \text{ denotes the sine integral.}} \\ & \approx \boxed{0.0862} \end{aligned}


Reference: Sine integral

Chew-Seong Cheong The solution is very classy and excellent

Aly Ahmed - 11 months, 3 weeks ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 11 months, 3 weeks ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...